Computer Architecture and Organization

Miles Murdocca and Vincent Heuring

Chapter 2 - Data Representation

Chapter Contents

2.1 Fixed Point Numbers

2.2 Floating-Point Numbers
2.3 Case Study: Patriot Missile Defense Failure Caused by

Loss of Precision
2.4 Character Codes

Fixed Point Numbers

- Using only two digits of precision for signed base 10 numbers, the range (interval between lowest and highest numbers) is
[-99, +99] and the precision (distance between successive numbers) is 1.
- The maximum error, which is the difference between the value of a real number and the closest representable number, is $1 / 2$ the precision. For this case, the error is $1 / 2 \times 1=0.5$.
- If we choose $a=70, b=40$, and $c=-30$, then $a+(b+c)=80$ (which is correct) but $(a+b)+c=-30$ which is incorrect. The problem is that $(a+b)$ is +110 for this example, which exceeds the range of +99 , and so only the rightmost two digits (+10) are retained in the intermediate result. This is a problem that we need to keep in mind when representing real numbers in a finite representation.

Weighted Position Code

- The base, or radix of a number system defines the range of possible values that a digit may have: 0-9 for decimal; 0,1 for binary.
- The general form for determining the decimal value of a number is given by:

$$
n-1
$$

Example:

$$
\text { Value }=\sum_{i=-m} b_{i} \cdot k^{i}
$$

$$
\begin{aligned}
541.25_{10} & =5 \times 10^{2}+4 \times 10^{1}+1 \times 10^{0}+2 \times 10^{-1}+5 \times 10^{-2} \\
& =(500)_{10}+(40)_{10}+(1)_{10}+(2 / 10)_{10}+(5 / 100)_{10} \\
& =(541.25)_{10}
\end{aligned}
$$

Base Conversion with the Remainder Method

Example: Convert 23.375_{10} to base 2. Start by converting the integer portion:

Base Conversion with the Multiplication Method

- Now, convert the fraction:

- Putting it all together, $23.375_{10}=10111.011_{2}$

Nonterminating Base 2 Fraction

- We can't always convert a terminating base 10 fraction into an equivalent terminating base 2 fraction:

Base 2, 8, 10, 16 Number Systems

Example: Show a column for ternary (base 3). As an extension of that, convert 14_{10} to base 3, using 3 as the divisor for the remainder method (instead of 2). Result is 112_{3}

Binary (base 2)	Octal (base 8)	Decimal (base 10)	Hexadecimal (base 16)
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	A
1011	13	11	B
1100	14	12	C
1101	15	13	D
1110	16	14	E
1111	17	15	F

More on Base Conversions

- Converting among power-of-2 bases is particularly simple:

$$
\begin{aligned}
& 1011_{2}=\left(10_{2}\right)\left(11_{2}\right)=23_{4} \\
& 23_{4}=\left(2_{4}\right)\left(3_{4}\right)=\left(10_{2}\right)\left(11_{2}\right)=1011_{2} \\
& 101010_{2}=\left(101_{2}\right)\left(010_{2}\right)=52_{8} \\
& 01101101_{2}=\left(0110_{2}\right)\left(1101_{2}\right)=6 D_{16}
\end{aligned}
$$

- How many bits should be used for each base 4, 8, etc., digit? For base 2 , in which $2=2^{1}$, the exponent is 1 and so one bit is used for each base 2 digit. For base 4 , in which $4=2^{2}$, the exponent is 2 , so so two bits are used for each base 4 digit. Likewise, for base 8 and base 16, $8=2^{3}$ and $16=2^{4}$, and so 3 bits and 4 bits are used for base 8 and base 16 digits, respectively.

Binary Addition

- This simple binary addition example provides background for the signed number representations to follow.

Signed Fixed Point Numbers

- For an 8 -bit number, there are $2^{8}=256$ possible bit patterns. These bit patterns can represent negative numbers if we choose to assign bit patterns to numbers in this way. We can assign half of the bit patterns to negative numbers and half of the bit patterns to positive numbers.
- Four signed representations we will cover are:

Signed Magnitude
One's Complement
Two's Complement
Excess (Biased)

3-Bit Signed Integer Representations

Decimal Unsigned Sign-Mag. 1's Comp. 2's Comp. Excess 4

7	111	-	-	-	-
6	110	-	-	-	-
5	101	-	-	-	-
4	100	-	-	-	-
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
+0	000	000	000	000	100
-0	-	100	111	000	100
-1	-	101	110	111	011
-2	-	110	101	110	010
-3	-	-	100	100	001
-4	-			000	

Signed Magnitude

- Also know as "sign and magnitude," the leftmost bit is the sign ($0=$ positive, $1=$ negative) and the remaining bits are the magnitude.
- Example:
$+25_{10}=00011001_{2}$
$-25_{10}=10011001_{2}$
- Two representations for zero: $+0=00000000_{2},-0=10000000_{2}$.
- Largest number is +127 , smallest number is -127_{10}, using an 8 -bit representation.

One's Complement

- The leftmost bit is the sign ($0=$ positive, $1=$ negative $)$. Negative of a number is obtained by subtracting each bit from 2 (essentially, complementing each bit from 0 to 1 or from 1 to 0). This goes both ways: converting positive numbers to negative numbers, and converting negative numbers to positive numbers.
- Example:
$+25_{10}=00011001_{2}$
$-25_{10}=11100110_{2}$
- Two representations for zero: $+0=00000000_{2},-0=11111111_{2}$.
- Largest number is $+127_{10}$, smallest number is -127_{10}, using an 8 -bit representation.

Two' s Complement

- The leftmost bit is the sign ($0=$ positive, $1=$ negative). Negative of a number is obtained by adding 1 to the one' s complement negative. This goes both ways, converting between positive and negative numbers.
- Example (recall that -25_{10} in one's complement is 11100110_{2}):
$+25_{10}=00011001_{2}$
$-25_{10}=11100111_{2}$
- One representation for zero: $+0=00000000_{2},-0=00000000_{2}$.
- Largest number is $+127_{10}$, smallest number is -128_{10}, using an 8 -bit representation.

Excess (Biased)

- The leftmost bit is the sign (usually $1=$ positive, $0=$ negative). Positive and negative representations of a number are obtained by adding a bias to the two' s complement representation. This goes both ways, converting between positive and negative numbers. The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents.
- Example (excess 128 "adds" 128 to the two' s complement version, ignoring any carry out of the most significant bit) :
$+12_{10}=10001100_{2}$
$-12_{10}=01110100_{2}$
- One representation for zero: $+0=10000000_{2},-0=10000000_{2}$.
- Largest number is $+127_{10}$, smallest number is -128_{10}, using an 8 -bit representation.

Base 10 Floating Point Numbers

- Floating point numbers allow very large and very small numbers to be represented using only a few digits, at the expense of precision. The precision is primarily determined by the number of digits in the fraction (or significand, which has integer and fractional parts), and the range is primarily determined by the number of digits in the exponent.
- Example (+6.023 $\times 10^{23}$):

Normalization

- The base 10 number 254 can be represented in floating point form as 254×10^{0}, or equivalently as:

25.4×10^{1},	or	2.54×10^{2},
or		
$.254 \times 10^{3}$,	or	$.0254 \times 10^{4}$,

infinitely many other ways, which creates problems when making comparisons, with so many representations of the same number.

- Floating point numbers are usually normalized, in which the radix point is located in only one possible position for a given number.
- Usually, but not always, the normalized representation places the radix point immediately to the left of the leftmost, nonzero digit in the fraction, as in: . 254×10^{3}.

Floating Point Example

- Represent $.254 \times 10^{3}$ in a normalized base 8 floating point format with a sign bit, followed by a 3-bit excess 4 exponent, followed by four base 8 digits.
- Step \#1: Convert to the target base.
$.254 \times 10^{3}=254_{10}$. Using the remainder method, we find that $254_{10}=$ 376×8^{0} :

$$
\begin{aligned}
& 254 / 8=31 \text { R } 6 \\
& 31 / 8=3 \text { R } 7 \\
& 3 / 8=0 \text { R } 3
\end{aligned}
$$

- Step \#2: Normalize: $376 \times 8^{0}=.376 \times 8^{3}$.
- Step \#3: Fill in the bit fields, with a positive sign (sign bit $=0$), an exponent of $3+4=7$ (excess 4), and 4 -digit fraction $=.3760$:

$$
0111.011 \quad 111 \quad 110000
$$

Error, Range, and Precision

- In the previous example, we have the base $b=8$, the number of significant digits (not bits!) in the fraction $s=4$, the largest exponent value (not bit pattern) $M=3$, and the smallest exponent value $m=-4$.
- In the previous example, there is no explicit representation of 0 , but there needs to be a special bit pattern reserved for 0 otherwise there would be no way to represent 0 without violating the normalization rule. We will assume a bit pattern of 0000000000000000 represents 0 .
- Using b, s, M, and m, we would like to characterize this floating point representation in terms of the largest positive representable number, the smallest (nonzero) positive representable number, the smallest gap between two successive numbers, the largest gap between two successive numbers, and the total number of numbers that can be represented.

Error, Range, and Precision (cont')

- Largest representable number: $b^{M} \times\left(1-b^{-s}\right)=8^{3} \times\left(1-8^{-4}\right)$
- Smallest representable number: $b^{m} \times b^{-1}=8^{-4-1}=8^{-5}$
- Largest gap: $b^{M} \times b^{-s}=8^{3-4}=8^{-1}$
- Smallest gap: $b^{m} \times b^{-s}=8^{-4-4}=8^{-8}$

Error, Range, and Precision (cont')

- Number of representable numbers: There are 5 components: (A) sign bit; for each number except 0 for this case, there is both a positive and negative version; (B) ($M-m$) + 1 exponents; (C) b-1 values for the first digit (0 is disallowed for the first normalized digit); (D) b^{b-1} values for each of the s - 1 remaining digits, plus (E) a special representation for 0 . For this example, the 5 components result in: $2 \times((3-(-4))+1) \times$ $(8-1) \times 8^{4-1}+1$ numbers that can be represented. Notice this number must be no greater than the number of possible bit patterns that can be generated in 16 bits, which is 2^{16}.

Example Floating Point Format

- Smallest number is $1 / 8$
- Largest number is $7 / 4$
- Smallest gap is $1 / 32$
- Largest gap is $1 / 4$
- Number of representable numbers is 33 .

Gap Size Follows Exponent Size

- The relative error is approximately the same for all numbers.
- If we take the ratio of a large gap to a large number, and compare that to the ratio of a small gap to a small number, then the ratios are the same:
$\begin{aligned} & \text { A large gap } \longrightarrow \\ & \text { A large number } \longrightarrow\end{aligned} \frac{b^{M-s}}{b^{M} \times\left(1-b^{-s}\right)}=\frac{b^{-s}}{1-b^{-s}}=\frac{1}{b^{s}-1}$
$\begin{aligned} & \text { A small gap } \longrightarrow \\ & \text { A small number } \longrightarrow\end{aligned} \frac{b^{m-s}}{b^{m} \times\left(1-b^{-s}\right)}=\frac{b^{-s}}{1-b^{-s}}=\frac{1}{b^{s}-1}$

Conversion Example

- Example: Convert $\left(9.375 \times 10^{-2}\right)_{10}$ to base 2 scientific notation
- Start by converting from base 10 floating point to base 10 fixed point by moving the decimal point two positions to the left, which corresponds to the -2 exponent: . 09375.
- Next, convert from base 10 fixed point to base 2 fixed point:

. 09375	\times	2	$=$	0.1875	
. 1875	\times	2	$=$	0.375	
. 375	\times	2	$=$	0.75	
. 75		\times	2	=	1.5
. 5		\times	2	=	1.0

- Thus, $(.09375)_{10}=(.00011)_{2}$.
- Finally, convert to normalized base 2 floating point:

$$
.00011=.00011 \times 2^{0}=1.1 \times 2^{-4}
$$

IEEE-754 Floating Point Formats

IEEE-754 Examples

IEEE-754 Conversion Example

- Represent -12.625_{10} in single precision IEEE-754 format.
- Step \#1: Convert to target base. $-12.625_{10}=-1100.101_{2}$
- Step \#2: Normalize. $-1100.101_{2}=-1.100101_{2} \times 2^{3}$
- Step \#3: Fill in bit fields. Sign is negative, so sign bit is 1. Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer $3+127=130$. Leading 1 of significand is hidden, so final bit pattern is:
110000010.10010100000000000000000

Effect of Loss of Precision

- According to the General Accounting Office of the U.S. Government, a loss of precision in converting 24-bit integers into 24-bit floating point numbers was responsible for the failure of a Patriot anti-missile battery.

ASCII Character Code

- ASCII is a 7-bit code, commonly stored in 8bit bytes.
- " A " is at 41_{16}. To convert upper case letters to lower case letters, add 20_{16}. Thus " a " is at $41_{16}+20_{16}=$ 61_{16}.
- The character " 5 " at position 35_{16} is different than the number 5 . To convert character-numbers into number-numbers, subtract 30_{16} : $35_{16}{ }^{-}$ $30_{16}=5$.

00 NUL	10 DLE	20	SP	30	0	40	@	50	P	60		70	p
01 SOH	11 DC1	21	!	31	1	41	A	51	Q	61	a	71	q
02 STX	12 DC2	22	"	32	2	42	B	52	R	62	b	72	r
03 ETX	13 DC3	23	\#	33	3	43	C	53	S	63	c	73	s
04 EOT	14 DC4	24	\$	34	4	44	D	54	T	64	d	74	t
05 ENQ	15 NAK	25	\%	35	5	45	E	55	U	65	e	75	u
06 ACK	16 SYN	26	\&	36	6	46	F	56	V	66	f	76	v
07 BEL	17 ETB	27	'	37	7	47	G	57	W	67	g	77	w
08 BS	18 CAN	28	(38	8	48	H	58	X	68	h	78	x
09 HT	19 EM	29)	39	9	49	I	59	Y	69	i	79	y
0 A LF	1A SUB	2A	*	3 A	:	4A	J	5A	Z	6A	j	7A	z
0B VT	1 B ESC	2B	$+$	3B	;	4B	K	5B	[6B	k	7B	
$0 \mathrm{C} F \mathrm{~F}$	1C FS	2 C		3 C	$<$	4 C	L	5 C	-	6 C	1	7 C	
0D CR	1D GS	2D	-	3D	=	4D	M	5D]	6 D	m	7D	\}
0 E SO	1E RS	2E	.	3 E	>	4E	N	5 E	\wedge	6 E	n	7E	\sim
0F SI	1 F US	2F	,	3F	?	4 F	O	5F		6 F	o	7F	DEL

NUL Null	FF	Form feed	CAN Cancel		
SOH Start of heading	CR	Carriage return	EM	End of medium	
STX	Start of text	SO	Shift out	SUB	Substitute
ETX	End of text	SI	Shift in	ESC	Escape
EOT	End of transmission	DLE	Data link escape	FS	File separator
ENQ	Enquiry	DC1	Device control 1	GS	Group separator
ACK	Acknowledge	DC2	Device control 2	RS	Record separator
BEL	Bell	DC3	Device control 3	US	Unit separator
BS	Backspace	DC4	Device control 4	SP	Space
HT	Horizontal tab	NAK	Negative acknowledge	DEL	Delete
LF	Line feed	SYN	Synchronous idle		
VT	Vertical tab	ETB	End of transmission block		

EBCDIC

Character Code

- EBCDIC is an 8bit code.

00 NUL	20 DS	40 SP	60 -	80	A0	C0	E0 \}
01 SOH	21 SOS	41	61	81 a	A1	C1 A	E1
02 STX	22 FS	42	62	82 b	A2	C2 B	E2 S
03 ETX	23	43	63	83	A3	C3 C	E3 T
04 PF	24 BYP	44	64	84 d	A4 u	C4 D	E4 U
05 HT	25 LF	45	65	85 e	A5 v	C5 E	E5 V
06 LC	26 ETB	46	66	86	A6 w	C6 F	E6 W
07 DEL	27 ESC	47	67	87 g	A7 x	C7 G	E7 X
08	28	48	68	88 h	A8 y	C8 H	E8 Y
09	29	49	69	89	A9 z	C9 I	E9 Z
0A SMM	2A SM	4A ¢	6A	8A	AA	CA	EA
0B VT	2B CU2	4B	6B	8B	AB	CB	EB
$0 \mathrm{C} F \mathrm{FF}$	2C	4C <	6 C \%	8C	AC	CC	EC
0D CR	2D ENQ	4D (6 D	8D	AD	CD	ED
0 E SO	2E ACK	$4 \mathrm{E}+$	$6 \mathrm{E}>$	8E	AE	CE	EE
0F SI	2F BEL	4F	6 F ?	8F	AF	CF	EF
10 DLE	30	50 \&	70	90	B0	D0 \}	F0 0
11 DC1	31	51	71	91 j	B1	D1 J	F1 1
12 DC 2	32 SYN	52	72	92 k	B2	D2 K	F2 2
13 TM	33	53	73	931	B3	D3 L	F3 3
14 RES	34 PN	54	74	94 m	B4	D4 M	F4 4
15 NL	35 RS	55	75	95 n	B5	D5 N	F5 5
16 BS	36 UC	56	76	96 o	B6	D6 O	F6 6
17 IL	37 EOT	57	77	97 p	B7	D7 P	F7 7
18 CAN	38	58	78	98 q	B8	D8 Q	F8 8
19 EM	39	59	79	99 r	B9	D9 R	F9 9
1A CC	3A	5A !	7A	9A	BA	DA	FA
1B CU1	3B CU3	5B \$	7B \#	9B	BB	DB	FB
1 C IFS	3C DC4	5C	7C @	9C	BC	DC	FC
1D IGS	3D NAK	5D)	7 D	9D	BD	DD	FD
1E IRS	3E	5E	7 E	9E	BE	DE	FE
1F IUS	3 F SUB	5F	7F	9F	BF	DF	FF

Unicode Character Code

- Unicode is a 16bit code.

Chapter 2 - Data Representation

0000 NUL	0020	SP	0040 @	0060		0080	Ctrl	00A0 NBS	00C0	A	00E0	à
0001 SOH	0021	!	0041 A	0061	a	0081	Ctrl	00A1	00 C 1	Á	00E1	á
0002 STX	0022	"	0042 B	0062	b	0082	Ctrl	00A2 ¢	00 C 2	Â	00E2	â
0003 ETX	0023	\#	0043 C	0063	c	0083	Ctrl	00A3 £	00 C 3	Ã	00E3	ã
0004 EOT	0024	\$	0044 D	0064	d	0084	Ctrl	00A4 a	00 C 4	Ä	00E4	ä
0005 ENQ	0025	\%	0045 E	0065	e	0085	Ctrl	00A5 羊	00 C 5	Å	00E5	å
0006 ACK	0026	\&	0046 F	0066	f	0086	Ctrl	00A6	00C6	Æ	00E6	æ
0007 BEL	0027	,	0047 G	0067	g	0087	Ctrl	00A7 §	00C7	C	00E7	ç
0008 BS	0028	(0048 H	0068	h	0088	Ctrl	00A8	00C8	E	00E8	è
0009 HT	0029)	0049	0069	i	0089	Ctrl	00A9 ©	00C9	É	00E9	é
000A LF	002A	*	004A	006A	j	008A	A Ctrl	00 AA a	00CA	E	00EA	ê
000B VT	002B	$+$	004B K	006B	k	008B	Ctrl	00 AB	00 CB	Ë	00EB	ë
000 C FF	002C		004C L	006C	1	008 C	Ctrl	00AC	00CC	İ	00 EC	ì
000D CR	002D	-	004D M	006D	m	008D	Ctrl	00AD	00CD	Í	00ED	
000E SO	002E		004 E N	006E	n	008E	Ctrl	00AE ®	00CE	Î	00EE	̂̂
000F SI	002F	1	004F O	006F	o	008F	Ctrl	00AF	00CF	Ï	00EF	ï
0010 DLE	0030	0	0050	0070	p	0090	Ctrl	00B0	00D0		00F0	4
0011 DC1	0031	1	0051 Q	0071	q	0091	Ctrl	00B1 \pm	00D1	N	00F1	
0012 DC2	0032	2	0052 R	0072	r	0092	Ctrl	00B2	00D2	Ò	00F2	ò
0013 DC3	0033	3	0053 S	0073	S	0093	Ctrl	00B3	00D3	Ó	00F3	O
0014 DC4	0034	4	0054 T	0074	t	0094	Ctrl	00B4	00D4	Ô	00F4	ô
0015 NAK	0035	5	0055 U	0075	u	0095	Ctrl	00B5 μ	00D5	Õ	00F5	ธั
0016 SYN	0036	6	0056 V	0076	v	0096	Ctrl	00B6 -	00D6	Ö	00F6	ö
0017 ETB	0037	7	0057 W	0077	w	0097	Ctrl	00B7	00D7	\times	00F7	\div
0018 CAN	0038	8	0058 X	0078	x	0098	Ctrl	00B8	00D8	\emptyset	00F8	\varnothing
0019 EM	0039	9	0059 Y	0079	y	0099	Ctrl	00B9	00D9	Ù	00F9	ù
001A SUB	003A	:	005A Z	007A	z	009A	A Ctrl	00 BA 앙	00DA	Ú	00 FA	ú
001B ESC	003B	;	005B	007B		009B	Ctrl	00BB	00DB	U	00 FB	,
001C FS	003C	<	005C	007C		009C	Ctrl	00BC 1/4	00DC	U	00 FC	
001D GS	003D	$=$	005D	007D)	009D	Ctrl	00BD 1/2	00DD	Ý	00FD	
001 E RS	003E	>	005E	007E	\sim	009E	Ctrl	00BE 3/4	00DE	y	00 FE	
001F US	003F	?	005F	007F D	DEL	009F	Ctrl	00BF	00DF	§	00FF	$\ddot{\mathrm{y}}$
NUL Null		SOH Start of heading				CAN Cancel			SP Space			
STX Start of	Start of text	EOT	End of transmission			EM		End of medium	DEL		Delete	
ETX End of	End of text	DC1	Device control 1			SUB		Substitute	Ctrl		Control	
Enquiry		DC2	Device control 2			ESC		Escape	FF		Form feed	
Acknowledge		DC3	Device control 3			FS		File separator	CR		Carriage return	
Bell		DC4 Device control 4				GS		Group separator	- SO		Shift out	
Backspace		NAK Negative acknowledge				RS		Record separator	SI		Shift in	
Horizontal tab		NBS	Non-breaking space			US U		Unit separator	DLE		Data link escape Vertical tab	
LF Line f	eed		B End of	nsmissi	on blo		SYN	Synchronous i	dle VT			

