William Stallings
Computer Organization

and Architecture
Oth Edition :

Chapter 3

A Top-Level View of Computer
Functlonland Interconnect;on

‘
Computer Components

® Contemporary computer designs are based on concepts
developed by John.von Neumann at the Institute for Advanced
Studies, Princeton

B Referred to as the von Neumann architecture and is based on
 three key concepts:

® Data and instructions are stored in_a single read-write memory

® The contents of this memory are addressable by location, without
regard to the type of data contained there

® Execution occurs in a sequential fashion (unless explicitly modified)
from one instruction to the next

® Hardwired program

® The result of the process of connecting the various components in
the:-desired configuration :

Sequence of
Data ————————— arithmetic 2 Resulis
and logic

functions

H a rd W a re _ _ (a) Programming in]l:.lrdwart
and Software
Approaches e] forocion

Control
signals

General-purpose
arithmetic Resilts
and logic :
functions

Dt —

(b} Programming in software

Figure 3.1 Hardware and Software Approaches

/0O

Components

CPU Main Memory -

0
System 1
. _ Bus 2
PC MAR Instruction .
Instruction ' _
IR MBR Instruction Com puter
/0O AR) :
Exedution bats Components:
unit 'O BR E::
Diaia :
* Top Level
1/0 Module : Ash
=1 :
View
. rC = Program counter
Buffers IR = Instruction register
MAR = Memory address register
MBR = Memory buffer register

'O AR = Input/output address register
'O BR = Input/output buffer register

Figure 3.2 Computer Components: Top-Level View

. Basic Instruction Cycle

Fetch Cycle Execute Cycle

Fetch Next Exceute '
Instruction I : Instruction HALT

Figure 3.3 Basic Instruction Cycle

Fetch Cycle

B At the beginning of each instruction cycle the processor
fetches an instruction from memory

® The program counter (PC) holds the address of the instruction
to be fetched next .

B The processor increments the PC after each instruction fetch
so that it will fetch the next instruction in sequence

B The fetched mstructlon IS Ioaded into the mstructlon reglster
(IR)

® The processor interprets the instruction and performs the
required action -

Action Categoriés

() 3 4 15

Opcode Address

{a) Instruction format

0 1 : : : . 15
S Magnitude

(b) Integer format

| Program Counter (PC} = Address of in'_-:l.ructiun
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage
{c) Internal CPU registers
0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

Memory CPU Registers | Memory CPU Registers
01 9 4 0 3oo|lPC J3oof1940] _[301]PC
31H_’5941 ACL301)5 9 4 1 000 3[AC
0212 9 4 | 1 9 4 QIR 302|2 9 4 1 | & 4 O|IR
940[0 0 0 3 940[0 0 0 3
410 0 0 2 : Q41|00 0 0 2
Example Stp | sp2
Memory CPU Registers Memory CPU Registers
Of 00(1 9 40 30 1|PC 30001 9 40] .[{302|PC
N5 9 4 1 000 3JACL30L|5 9 41 000 5 AC
P 3.{}3294|—\1_ng4[11?. 3[]2294l<5'}4] :
rogra 940[0 0 0 3 9400 0 0 3 342=5
E t. 41|10 0 0O 2 : 941|000 2—-——*”
Memory CPU Registers Memory CPU Registers
W00[1 9 4 0 3oz2lpe J3oof1 9 40| |30 3|PC
301{5 9 4 1 000 SIACL301|S 9 4 1 000 5{AC
2(2 9 4 1—»2 09 4 I|IR J302]2 0 4] 2094 1[IR
940[0 0 0 3 940[0 0 0 3
04110 0 0 2 : 941l0 0D 0 5
Step 5 ! Step b

Figure 3.5 Example of Program Execution
(contents of memory and registers in hexadecimal)

|
Instruction Cycle State Diagram

Instruction Operand Operand
fetch - fetch ; - store
Multiple - Multiple -
operands results
Instruction Instruction Operand - Data Operand
address operation ——p address 0 i — address
calculation decoding calculation S calculation

Return for string :

Instruction complete, e e

fetch mext instruction

Figure 3.6 Instruction Cycle State Diagram

Classes of Interrupts

Frogram

Timer

LAy

Hardware failure

Generated by some condition that occurs as a result of an instruction
exevution, such us arithmetic overflow, division by zero, attempt to
exevute un illegal machine instruction, or reference outside a user's
allowed memory space.

Generated by a timer within the processor. This allows the operating
sysiem to perform certain functions on a regular basis,

Generated by an IO controller, to signil normal completion of an
operation, reguest service from the processor, or to signal a variety of
error comditions.

Generated by a fuilure such as power failure or memory parity error.

Program Flow Control —

User o User o User o
Program Program Program Program Program Program
o * .i-"i * .i-"i
" I-'. E - E
® A @ | o A le|o Al e
o . -~ :f ¥ & 1 . ¥ & 1
1 T-*"f IO 1 T-*"f f ﬂ_-',,..-vr IO — v i f*_'-!)
WRITE - { Command WRITE _‘.---'"::- i Command WRITE *'__.---l?"? Commind
P— ‘\-.“ I - ¥y 2 - L
- P §d
)9 /1 /]
iy | © i i
! END ¥ 4 0
F's T L]
@ PoF X i @ i
y ¥ g Ey [
& F [
."'; & 4 h"*«., Interrupt ;"j Interrupt
[/ @ ™ e, Hundier / Handler
WRITE ¥ WRITE AN 3 WRITE ~E. o 71 3
[—_— “'p' '?-'-..i: o - -‘--_""‘*F.__ P 1
& .-*'f ¥ NI f ;o END
@ A i
F' "."' [] 'f
Y if
©) x ® ,.'fr'
@ f“r"‘l.
L w 1 1 ¥
WRITE WRITE WREITE ®
{a) No interrupts {b) Interrupts; short IO wait (1) Interrupts; long IO wait

x = intermupt oceurs during course of execution of user program

Figure 3.7 Program Flow of Control Without and With Interrupts

Transfer of Control via Interrupts

User Program | I‘nter.rupt Handler

oy

(]

Interrupt ——»
occurs here i+ 1 -“

Figure 3.8 Transfer of Control via Interrupts

i | | |
Instruction Cycle With Interrupts

Fetch Cycle ~ Execute ijtle' Interruptj Cycle

Interrupts
Disabled

Check for

Interrupt;

Fetch Nexi Execute
Instruction _ Instruction

| HALT i

Figure 3.9 Instruction Cycle with Interrupts

Time

concurrent with

10 operation
Processor waits

I /O operation;

processor executing

/D) operation
concurrent with

processor executing

processor waits

I /O operation;

2lolelelelelelele|

(b) With interrupts

o}
(4)
_
HON
G)
o)
_
HON
©

{a) Without interrupts

Figure 3.10 Program Timing: Short I/O Wait

Program
Timing:
Short I/O
Wait

Time

L/} operation;
processor waits

I/} operation;
processor waits

o}
ﬁ
HON
@)
ﬁ
HON
©

(a) Without interrupts

1/0) operation
concurrent with

then processor
walks

- [0} operation
concurrent with

then processor
walts

o}
HON
©
NON
HON
®
HON

(b) With interrupts

Figure 3.11 Program Timing: Long I/O Wait

processor executing;

processor executing:

Program
Timing:
Long |/O
Wait

Instruction Cycle State Diagram
With Interrupts

Instruction Operand : Operand
fetch fetch store
Multiple Multiple
operands results
Instruction Instruction Operand Data Orperand
address operation —p address - —p address Interrupt — Interrupt
calculation decoding calculation P calculation pRieckc

\ Instruction complete, \Efturu for string ||:.terrllllt /
fetch next instruction or vector data

Figure 3.12 Instruction Cycle State Diagram, With Interrupts

. Interrupt
User program handler X

l—v—

\

X

|

Interrupt
handler Y

——

%IIIIIIIIII

_(a) Sequential interrupt processing
Interrupt
User program - handler X
/’...""E
\\-‘-‘:
Interrupt
andler Y

mlllllllllli‘

(b} Nested interrupt processing

Figure 3.13 Transfer of Control with Multiple Interrupts

Multiple

Interrupts

+ Time Sequence of
Multlple Interrupts

Printer Communication

LT HEOSaTn, interrupt service routine interrupt service routine
[=4 | »—
. — . /"_ P

— = W5 | =
| = ;.“ - i -

— b — —

= N—es | C

— L —

| — £ | £=2 Disk
I N - _ wpt service routine

/

Figure 3.14 Example Time Sequence of Multiple Interrupts

s | | |
/O Function

® |/O module can exchange data directly with the processor

B Processor can read data from or write data to an 1/O module

" Processor identifies a specific device that is controlled by a
particular I/O module

- B /O instructions rather than memory referencing instructions

B |n some cases it is desirable to allow I/O exchanges to occur
directly with memory

® The processor grants to an I/O module the authority to read from or
write to memory so that the I/O memory transfer can occur without
tying up the processor ' ' '

" The I/O module issues read or write commands to memory relieving
the processor of responsibility for the exchange

® This operation is known as direct memory access.(DMA)

Computer

—_—
E 0 CCIITT1 Data
: Modules

I/O Module —
Write Data
—_—
External
Address >l M Ports Data >
Intermal
Data Iul:!rrnpt >
External
[hata
Instructions Address _»
u Control
Data p- | CpPu ; }
Data >

miterru
Si;r H

Figure 3.15 Computer Modules

The interconnection structure must support the
following types of transfers: |

Bus
Inter
conn
ectio

Data Bus

B Data lines that provide a path for moving data among system
modules

® May consist of 32, 64, 128, or more separate lines
B The number of lines is referred to as the width of the data bus

® The number of lines determines how many bits can be
transferred at a time

® The width of the data bus
is a key factor in
determining overall
system performance

9 & -Q@j {0 ==L

+. AddreSs Bus ' Control -Bus'

—

® Used to designate the source or '
destination of the data on the data
bus
|

® |f the processor wishes to read a
word of data from memory it puts
the address of the desired word
on the address lines

® Width determines the maximum
possible memory capacity of the
system

B Also used to address /O ports

® The higher order bits are used to
select a particular module on the -
bus and the lower order bits
select a memory location or I/O
port within the module ;

Bus Interconnection Scheme

CPU Memory ||* * *| Memory /o seel JO

ik il il a
Control lines
| ui 1 ni
Address lines Bus

Figure 3.16 Bus Interconnection Scheme

Main
Memory

Processor

Cache

Local 1Ay
controller

Metwork

S}rstﬂn Bus

SCs1

Expansion
bus interface

Modem

Serial

Expansion Bus

{a) Traditional Bus Architecture

Main
Memory

Svstem Bus

SCS1

Fire¥Wire

Graphic

Video

LAN

HiEh-Speed Bus

FAX

Expansion
bus interface

Modem

Serial

Expansion Bus

" Figure 3.17 Example Bus Configurations

(b} High-Ferformance Architecture

Bus

Conf
igura
tions

oo _ _ _
Elements of Bus Design

Tvpe Bus Width
Dedicated Address
Multiplexed Dratia

Method of Arbitration Data Transfer Type
Centrulized Reiud
Distributed Write

Timing Read-modify-write

Synehronous Reid-after-write
Asynchronous | Blovk

LG e A s G gy & JEGE i of
satus_ T »— Synchronous

lines

Address ____ & “Stable address) - Bus
[

i i i
Address [| | O t
Rty . . Operations
enable : ‘ 1 4
Data I i)
Valid data in
Kead lines 1' : ";-.. . 1}—
cvcle ii 1 : !
Read i 4 : \ |
Data | L’r >
Valid dat t
Write lines : 4I""-.. a iﬂ a o 1}—
cycle : : : |
Write I | jf 2 \ ’
I I | i

Figure 3.18 Timing of Synchrﬂnﬁus Bus Uperﬁtiﬂns

5:;::: —< Status signals >_ .

Address

lines '_‘_‘< 7 Stable address 7 >_ el

Read ——\ : ;
[rata

lines 4 Valid data) S— Ti m i n g O f
Acknowledge o /_ _ |
(a) System bus read cycle ASy n C h rO n O u S
Bus
Ty Operations

Address

lines ‘—‘(7 Stable address >___
[rata
lines —< Valid data >—

Wl‘itf ﬁ ;
Acknowledge -)

(b) System bus write cycle

Figure 3.19 Timing of Asynchronous Bus Operations

5 Point-to-Point Interconnect | |I

Quick Path Interconnect

® |ntroduced in 2008

® Multiple direct connections

® Direct pairwise connections to other components
eliminating the need for arbitration found in shared
transmission systems

® | ayered protocol architecture

® These processor level interconnects use a layered protocol
architecture rather than the simple use of control signals
found in shared bus arrangements

B Packetized data transfer

® Data are sent as a sequence of packets each of which
includes control headers and error control codes

1/0 device

1/0 device

Multicore
‘Configuration
Using
QPI

DRAM

DRAM

DRAM

DRAM

g g
= | =
| & ¥
= S|
A < > e
QFrl PCI Express Memory bus

Figure 3.20 Multicore Configuration Using QPI

QPI Layers

-

Packets
Protocol < Protocol
Routing Routing
Flits
Link » Link
Physical < Phits » Physical

F'igure 3.21 QPI Layers

. | | | |
Physical Interface of the Intel QPI
Interconnect

COMPONENT A

Intel QuickPath Interconnect Port
= =
;_,'] Transmission Lanes Reception Lanes (E]
& =
s]
? Reception Lanes Transmission Lanes E
& =

Intel QuickPath Interconnect Port

COMPONENT B

Figure 3.22 Physical Interface of the Intel QPI Interconnect

- QPI Multilane Distribution

sea [¥nellldnsl || ;1 | QFF
lome 0}

bl strenms of Fits

r"'.__ — et e, R

el [Fnsz |[42 | QF1
. Ium.-r}

#lo+l)|| ¥l @ & @ | Fndd || fmel || Fn |00 s

Pl
i || 220 || & Q
i lane 1%

Figure 3.23 QPI Multilane Distribution

* QP! Link Layer

: : ® Flow control function
® Performs two key - ® Needed to ensure that a

functions: flow control and sending QPI entity does not
error control overwhelm a receiving QPI

entity by sending data faster .
than the receiver can process
the data and clear buffers for

® Operate on the' level of
the flit (flow control unit)

= Each flit consists of a 72- ~ more incoming data
bit message payload and
ARSI RUISR G OlEa) ® Error control function

code called a cyclic] "5
redundancy check ® Detects and recovers from bit

(CREES - errors, and so isolates higher
_ layers from experiencing bit
errors

S | | | |
QPI Routing and Protocol Layers

Routing Layer

B Used to determine the course 0
that a packet will traverse '
across the available system
interconnects

B Defined by firmware and
describe the possible paths that _
a packet can follow m

. Peripheral Component Interconnect
(PCI)

® A popular high bandwidth, processor independent bus that can
function as a mezzanine or peripheral bus

B Delivers better system performance for high speed I/O subsystems

B PCIl Special Interest Group (SIG)

® Created to develop further and maintain the compatibility of the PCI
specifications

® PCJ| Express (PCle)

. ® Point-to-point interconnect scheme intended to replace bus-based schemes
such as PCI

n Key'requirement IS hi'gh capacity to sdpport the needs of higher data rate
I/O devices, such as Gigabit Ethernet

" Another requirement deals with the need to support time dependent data
streams

|

&

PC'G Gigabit)| rcre ||
Configuration [p=——————.

Chipset

PCle

A\ 4

PCle PClIe
Legacy PClIe PCle PCle
endpoint endpoint endpaoint endpaoint

Figure 3.24 Typical Configuration Using PCle

PCle Protocol Layers

/ Transaction layer
~ packets (TLP
Transaction e P .) [Transaction

Data link layer
- packets (DLLP
<’ J)

Data Link Data Link

Physical NP AeCal R | ; Physical

- | P

Figure 3.25 PCle Protocol La?érs

|

PCle Multilane Distribution

B? |

It

BT |

Figure 3.26 PCIe Multilane Distribution

b

PClLe
lmme

PCIe

lame 1

P le
lmme 2

PCLe
lame 1

'.'Sh

Scrambler

D+ D-

¥

ls.]

Differential
Receiver

1b
Y

> Clock recovery
circuit

128b/130b Encoding

',mh

Data recovery
circuit

et

Parallel to serial

lm

11.]

Serial to parallel

Transmitter Differential
Driver

' 130b

s

D+ D-

{a) Transmitter

128b/130b Decoding

' 128b

Descrambler

lst.

{b) Receiver

Figure 3.27 PCle Transmit and Receive Block Diagrams

PCle

Transmit

and

Recelve

C

Block

lagrams

PCle

Transaction Layer (TL)

® Receives read and write requests from
the software above the TL and creates
request packets for transmission to a
destination via the link layer

N I\/Iost transactlons use a spllt transactlon
technique

" Arequest packet is sent out by a
source PCle device which then walits
for a response called a comp/et/on
packet

® TL messages and some write
transactions are posted transactions
(meaning that no response IS
expected)

- TL packet format supports 32-bit
memory addressing and extended 64-
bit memory addressing

‘ | | |
The TL supports four address
spaces:

= Memory . m |/O

® The memory space includes ® This address space is used
system main memory and PCle for legacy PCI devices, with
/O devices reserved address ranges -
~ ® Certain ranges of memory used to address legacy /O
addresses map into I/O devices devices
B Configuration ® Message
® This address space enables - ® This address space is for
the TL to read/write . control signals related to
configuration registers i interrupts, error handling, and

associated with /O devices power management

PCle TLP Transaction Types

Address Space TLF Type Furpose
Memory Read Request Trsmsfer _ Ipeation in
ransfer duta to or from a location in the
Memory Memory Read Lock Reguest SyStem MEMmory map.
Memory Write Reguest
Vo I'D Read Reguest Transfer data to or from a location in the
'O Write Reyuest Sysiem memory map for legacy devices.
Caonfig Type 0 Reiwd Reguest
" - Config Type 0 Write Request | Transfer data 1o or from a location in the
Configuration = . :
Config Type | Read Request configuration spave of a PCle device.
Config Type 1 Write Reguest
Message Request ddes in-he RS T .
Mexsape = o . Frm]q-b:-. in-band messaging und event
' Message Request with Data Teporing.
Completion
Memaory, L'(), Completion with Data : : .
; . Retumed for certain requests,
Configuration Completion Locked

Completion Locked with Duta

|

Number
of octets

2 Sequence number | -—— D

W 4
2 CRC

by DLL

Created

B o PR <

1

Appended by PL

12 or 16 { Header : ! €

g 3
B 2]
= D) Bk 5
= e L
] =
o = £
Z a E
g = =
= - 2
- ,.n"
z = =
0 to. 4096 < Data £ z =
g 3
Ay s =
L) Ly -

Dor4 ECRC J
4 LCRC g

AT]~

i(a) Transaction Layer Packet {b) Data Link Layer Packet

Figure 3.28 PCle Protocol Data Unit Format

PCle
Protocol
Data

Unit
Format

|

TLP Memory Request Format

Last First
sequestor T DW BE | DW BE

16 octets

Address [63:32]

Address [31:2] R

Figure 3.29 TLP Memory Request Format

+ Summary

® Computer components
® Computer function
® |nstruction fetch and execute

" |nterrupts
= |/O function :
B |nterconnection structures
= Bus interconnection
= Bus structure |
= Multiple bus hierarchies
= Elements of bus design

A Top-Level View of
Computer Function
and Interconnection

B Point-to-point interconnect .

= QPI physical layer
= QPI link layer

= QPI routing layer
= QPI protocol layer

m PCl| express

= PCI physical and logical
architecture '

= PCle physical layer
= PCle transaction layer
= PCle data link layer

