William Stallings
Computer Organization

and Architecture
Oth Edition :



Chapter 3

A Top-Level View of Computer
Functlonland Interconnect;on



‘
Computer Components

® Contemporary computer designs are based on concepts
developed by John.von Neumann at the Institute for Advanced
Studies, Princeton

B Referred to as the von Neumann architecture and is based on
 three key concepts:

® Data and instructions are stored in_a single read-write memory

® The contents of this memory are addressable by location, without
regard to the type of data contained there

® Execution occurs in a sequential fashion (unless explicitly modified)
from one instruction to the next

® Hardwired program

® The result of the process of connecting the various components in
the:-desired configuration :
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Figure 3.1 Hardware and Software Approaches
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Figure 3.2 Computer Components: Top-Level View



. Basic Instruction Cycle
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Figure 3.3 Basic Instruction Cycle



Fetch Cycle

B At the beginning of each instruction cycle the processor
fetches an instruction from memory

® The program counter (PC) holds the address of the instruction
to be fetched next .

B The processor increments the PC after each instruction fetch
so that it will fetch the next instruction in sequence

B The fetched mstructlon IS Ioaded into the mstructlon reglster
(IR)

® The processor interprets the instruction and performs the
required action -




Action Categoriés



() 3 4 15

Opcode Address

{a) Instruction format

0 1 : : : . 15
S Magnitude

(b) Integer format

| Program Counter (PC} = Address of in'_-:l.ructiun
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage
{c) Internal CPU registers
0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine



Memory CPU Registers | Memory CPU Registers
01 9 4 0 3oo|lPC J3oof1940] _[301]PC
31H_’5941 ACL301)5 9 4 1 000 3[AC
0212 9 4 | 1 9 4 QIR 302|2 9 4 1 | & 4 O|IR
940[0 0 0 3 940[0 0 0 3
410 0 0 2 : Q41|00 0 0 2
Example Stp | sp2
Memory CPU Registers Memory CPU Registers
Of 00(1 9 40 30 1|PC 30001 9 40] .[{302|PC
N5 9 4 1 000 3JACL30L|5 9 41 000 5 AC
P 3.{}3294|—\1_ng4[11?. 3[]2294l<5'}4] :
rogra 940[0 0 0 3 9400 0 0 3 342=5
E t. 41|10 0 0O 2 : 941|000 2—-——*”
Memory CPU Registers Memory CPU Registers
W00[1 9 4 0 3oz2lpe J3oof1 9 40| |30 3|PC
301{5 9 4 1 000 SIACL301|S 9 4 1 000 5{AC
2(2 9 4 1—»2 09 4 I|IR J302]2 0 4 ] 2094 1[IR
940[0 0 0 3 940[0 0 0 3
04110 0 0 2 : 941l0 0D 0 5
Step 5 ! Step b

Figure 3.5 Example of Program Execution
(contents of memory and registers in hexadecimal)
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Instruction Cycle State Diagram
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Return for string :

Instruction complete, e e
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Figure 3.6 Instruction Cycle State Diagram



Classes of Interrupts

Frogram

Timer

LAy

Hardware failure

Generated by some condition that occurs as a result of an instruction
exevution, such us arithmetic overflow, division by zero, attempt to
exevute un illegal machine instruction, or reference outside a user's
allowed memory space.

Generated by a timer within the processor. This allows the operating
sysiem to perform certain functions on a regular basis,

Generated by an IO controller, to signil normal completion of an
operation, reguest service from the processor, or to signal a variety of
error comditions.

Generated by a fuilure such as power failure or memory parity error.




Program Flow Control —
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Figure 3.7 Program Flow of Control Without and With Interrupts



Transfer of Control via Interrupts
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Figure 3.8 Transfer of Control via Interrupts
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Instruction Cycle With Interrupts
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Figure 3.9 Instruction Cycle with Interrupts
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Instruction Cycle State Diagram
With Interrupts

Instruction Operand : Operand
fetch fetch store
Multiple Multiple
operands results
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address operation —p  address - —p  address Interrupt —  Interrupt
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\ Instruction complete, \Efturu for string ||:.terrllllt /
fetch next instruction or vector data

Figure 3.12 Instruction Cycle State Diagram, With Interrupts
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(b} Nested interrupt processing

Figure 3.13 Transfer of Control with Multiple Interrupts
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+ Time Sequence of
Multlple Interrupts
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Figure 3.14 Example Time Sequence of Multiple Interrupts



s | | |
/O Function

® |/O module can exchange data directly with the processor

B Processor can read data from or write data to an 1/O module

" Processor identifies a specific device that is controlled by a
particular I/O module

- B /O instructions rather than memory referencing instructions

B |n some cases it is desirable to allow I/O exchanges to occur
directly with memory

® The processor grants to an I/O module the authority to read from or
write to memory so that the I/O memory transfer can occur without
tying up the processor ' ' '

" The I/O module issues read or write commands to memory relieving
the processor of responsibility for the exchange

® This operation is known as direct memory access.(DMA)
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The interconnection structure must support the
following types of transfers: |
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Data Bus

B Data lines that provide a path for moving data among system
modules

® May consist of 32, 64, 128, or more separate lines
B The number of lines is referred to as the width of the data bus

® The number of lines determines how many bits can be
transferred at a time

® The width of the data bus
is a key factor in
determining overall
system performance

9 & -Q@j {0 ==L



+. AddreSs Bus ' Control -Bus'

—

® Used to designate the source or '
destination of the data on the data
bus
|

® |f the processor wishes to read a
word of data from memory it puts
the address of the desired word
on the address lines

® Width determines the maximum
possible memory capacity of the
system

B Also used to address /O ports

® The higher order bits are used to
select a particular module on the -
bus and the lower order bits
select a memory location or I/O
port within the module ;



Bus Interconnection Scheme

CPU Memory ||* * *| Memory /o seel JO

ik il il a
Control lines
| ui 1 ni
Address lines Bus

Figure 3.16 Bus Interconnection Scheme



Main
Memory

Processor

Cache

Local 1Ay
controller

Metwork

S}rstﬂn Bus

SCs1

Expansion
bus interface

Modem

Serial

Expansion Bus

{a) Traditional Bus Architecture

Main
Memory

Svstem Bus

SCS1

Fire¥Wire

Graphic

Video

LAN

HiEh-Speed Bus

FAX

Expansion
bus interface

Modem

Serial

Expansion Bus
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Elements of Bus Design

Tvpe Bus Width
Dedicated Address
Multiplexed Dratia

Method of Arbitration Data Transfer Type
Centrulized Reiud
Distributed Write

Timing Read-modify-write

Synehronous Reid-after-write
Asynchronous | Blovk
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Figure 3.19 Timing of Asynchronous Bus Operations



5 Point-to-Point Interconnect | |I



Quick Path Interconnect

® |ntroduced in 2008

® Multiple direct connections

® Direct pairwise connections to other components
eliminating the need for arbitration found in shared
transmission systems

® | ayered protocol architecture

® These processor level interconnects use a layered protocol
architecture rather than the simple use of control signals
found in shared bus arrangements

B Packetized data transfer

® Data are sent as a sequence of packets each of which
includes control headers and error control codes
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QPI Layers
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F'igure 3.21 QPI Layers
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Physical Interface of the Intel QPI
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Figure 3.22 Physical Interface of the Intel QPI Interconnect



- QPI Multilane Distribution
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Figure 3.23 QPI Multilane Distribution



* QP! Link Layer

: : ® Flow control function
® Performs two key - ® Needed to ensure that a

functions: flow control and sending QPI entity does not
error control overwhelm a receiving QPI

entity by sending data faster .
than the receiver can process
the data and clear buffers for

® Operate on the' level of
the flit (flow control unit)

= Each flit consists of a 72- ~ more incoming data
bit message payload and
ARSI RUISR G OlEa) ® Error control function

code called a cyclic ] "5
redundancy check ® Detects and recovers from bit

(CREES - errors, and so isolates higher
_ layers from experiencing bit
errors



S | | | |
QPI Routing and Protocol Layers

Routing Layer

B Used to determine the course 0
that a packet will traverse '
across the available system
interconnects

B Defined by firmware and
describe the possible paths that _
a packet can follow m



. Peripheral Component Interconnect
(PCI)

® A popular high bandwidth, processor independent bus that can
function as a mezzanine or peripheral bus

B Delivers better system performance for high speed I/O subsystems

B PCIl Special Interest Group (SIG)

® Created to develop further and maintain the compatibility of the PCI
specifications

® PCJ| Express (PCle)

. ® Point-to-point interconnect scheme intended to replace bus-based schemes
such as PCI

n Key'requirement IS hi'gh capacity to sdpport the needs of higher data rate
I/O devices, such as Gigabit Ethernet

" Another requirement deals with the need to support time dependent data
streams
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Figure 3.24 Typical Configuration Using PCle




PCle Protocol Layers
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Figure 3.25 PCle Protocol La?érs
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PCle

Transaction Layer (TL)

® Receives read and write requests from
the software above the TL and creates
request packets for transmission to a
destination via the link layer

N I\/Iost transactlons use a spllt transactlon
technique

" Arequest packet is sent out by a
source PCle device which then walits
for a response called a comp/et/on
packet

® TL messages and some write
transactions are posted transactions
(meaning that no response IS
expected)

- TL packet format supports 32-bit
memory addressing and extended 64-
bit memory addressing



‘ | | |
The TL supports four address
spaces:

= Memory . m |/O

® The memory space includes ® This address space is used
system main memory and PCle for legacy PCI devices, with
/O devices reserved address ranges -
~ ® Certain ranges of memory used to address legacy /O
addresses map into I/O devices devices
B Configuration ® Message
® This address space enables - ® This address space is for
the TL to read/write . control signals related to
configuration registers i interrupts, error handling, and

associated with /O devices power management



PCle TLP Transaction Types

Address Space TLF Type Furpose
Memory Read Request Trsmsfer _ Ipeation in
ransfer duta to or from a location in the
Memory Memory Read Lock Reguest SyStem MEMmory map.
Memory Write Reguest
Vo I'D Read Reguest Transfer data to or from a location in the
'O Write Reyuest Sysiem memory map for legacy devices.
Caonfig Type 0 Reiwd Reguest
" - Config Type 0 Write Request | Transfer data 1o or from a location in the
Configuration = . :
Config Type | Read Request configuration spave of a PCle device.
Config Type 1 Write Reguest
Message Request ddes in-he RS T .
Mexsape = o . Frm]q-b:-. in-band messaging und event
' Message Request with Data Teporing.
Completion
Memaory, L'(), Completion with Data : : .
; . Retumed for certain requests,
Configuration Completion Locked

Completion Locked with Duta
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TLP Memory Request Format

Last First
sequestor T DW BE | DW BE
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Address [63:32]

Address [31:2] R

Figure 3.29 TLP Memory Request Format



+ Summary

® Computer components
® Computer function
® |nstruction fetch and execute

" |nterrupts
= |/O function :
B |nterconnection structures
= Bus interconnection
= Bus structure |
= Multiple bus hierarchies
= Elements of bus design

A Top-Level View of
Computer Function
and Interconnection

B Point-to-point interconnect .

= QPI physical layer
= QPI link layer

= QPI routing layer
= QPI protocol layer

m PCl| express

= PCI physical and logical
architecture '

= PCle physical layer
= PCle transaction layer
= PCle data link layer




