computer science illuminated

Gates and Circuits

Nell Dale \& John Lewis
(adaptation by Erin
Chambers and Michael
Goldwasser)

Computers and Electricity

- A gate is a device that performs a basic operation on electrical signals
- Gates are combined into circuits to perform more complicated tasks

Gates

- Let's examine the processing of the following six types of gates
- NOT
- AND
- OR
- XOR
-NAND
- NOR

Describing Gates and Circuits

- There are three different, but equally powerful, notational methods for describing the behavior of gates and circuits
- Boolean expressions
- logic diagrams
- truth tables

Describing Gates and Circuits

- Boolean algebra: expressions in this algebraic notation are an elegant and powerful way to demonstrate the activity of electrical circuits
- Basic propositional statements are unambiguously either True or False
- Operations such as AND or NOT are then performed on these values
- A gate is simply a mechanical way to perform such a boolean operation

Describing Gates and Circuits

- Logic diagram: a graphical representation of a circuit
- Each type of gate is represented by a specific graphical symbol
- Truth table: defines the function of a gate by listing all possible input combinations that the gate could encounter, and the corresponding output

NOT Gate

- a NOT gate accepts one input value and produces one output value

Boolean Expression Logic Diagram Symbol

$$
\mathrm{X}=\mathrm{A}^{\prime}
$$

Truth Table

\mathbf{A}	\mathbf{X}
0	1
1	0

- a NOT gate is sometimes referred to as an inverter because it inverts the input value

AND Gate

- An AND gate accepts two input signals
- If the two input values for an AND gate are both 1 , the output is 1 ; otherwise, the output is 0

Boolean Expression Logic Diagram Symbol

Truth Table

\mathbf{A}	\mathbf{B}	\mathbf{X}
0	0	0
0	1	0
1	0	0
1	1	1

OR Gate

- If the two input values are both 0 , the output value is 0 ; otherwise, the output is 1

Boolean Expression Logic Diagram Symbol

$$
X=A+B
$$

\mathbf{A}	\mathbf{B}	\mathbf{X}
0	0	0
0	1	1
1	0	1
1	1	1

XOR Gate

- XOR, or exclusive OR, gate
- An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise
- Note the difference between the XOR gate and the OR gate; they differ only in one input situation
- When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

XOR Gate

$$
\begin{array}{cc}
\text { Boolean Expression } & \text { Logic Diagram Symbol } \\
\mathrm{X}=\mathrm{A} \oplus \mathrm{~B} & \mathrm{~B} \\
\hline \mathbf{A} & \mathbf{B} \\
\hline 0 & 0 \\
\hline 0 & 1 \\
\hline 1 & 0 \\
\hline 1 & 1 \\
\hline
\end{array}
$$

Figure 4.4 Various representations of an XOR gate

NAND and NOR Gates

- The NAND and NOR gates are essentially the opposite of the AND and OR gates, respectively

Figure 4.5 Various representations of a NAND gate

Boolean Expression	Logic Diagram Symbol
$\mathrm{X}=(\mathrm{A} \cdot \mathrm{B})^{\prime}$	\mathbf{A}
\mathbf{B}	\mathbf{A} \mathbf{B} \mathbf{X} 0 0 1 0 1 1 1 0 1 1 1 0

Figure 4.6 Various representations of a NOR gate

Gates with More Inputs

- Gates can be designed to accept three or more input values
- A three-input AND gate, for example, produces an output of 1 only if all input values are 1

Boolean Expression$X=A \cdot B \cdot C$	Logic Diagram Symbol	Truth Table			
		A	B	C	X
		0	0	0	0
		0	0	1	0
		0	1	0	0
		0	1	1	0
		1	0	0	0
		1	0	1	0
		1	1	0	0
		1	1	1	1

Constructing Gates

- A transistor is a device that acts, depending on the voltage level of an input signal, either as a wire that conducts electricity or as a resistor that blocks the flow of electricity
- A transistor has no moving parts, yet acts like a switch
- It is made of a semiconductor material, which is neither a particularly good conductor of electricity, such as copper, nor a particularly good insulator, such as rubber

Constructing Gates

- A transistor has three terminals
- A source
- A base
- An emitter, typically connected to a ground wire
- If the electrical signal is grounded, it is allowed to flow through an alternative route to the ground (literally) where it can do no harm

Constructing Gates

- It turns out that, because the way a transistor works, the easiest gates to create are the NOT, NAND, and NOR gates

Figure 4.9 Constructing gates using transistors

Circuits

- Two general categories
- In a combinational circuit, the input values explicitly determine the output
- In a sequential circuit, the output is a function of the input values as well as the existing state of the circuit
- As with gates, we can describe the operations of entire circuits using three notations
- Boolean expressions
- logic diagrams
- truth tables

Combinational Circuits

- Gates are combined into circuits by using the output of one gate as the input for another

jasonm:
Redo to get white space around table (p100)

Combinational Circuits

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{X}
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

- Because there are three inputs to this circuit, eight rows are required to describe all possible input combinations
- This same circuit using Boolean algebra:
$(A B+A C)$
jasonm:
Redo table to get white space
ow let's go the other way; let's take a Boolean expression and draw
- Consider the following Boolean expression: $\mathrm{A}(\mathrm{B}+\mathrm{C})$

Page 100

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{B}+\mathbf{C}$	$\mathbf{A}(\mathbf{B}+\mathbf{C})$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	1	0
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

- Now compare the final result column in this truth table to the truth table for the previous example
- They are identical
jasonm: Redo table (p101)

Properties of Boolean Algebra

Property	AND	OR
Commutative	$\mathrm{AB}=\mathrm{BA}$	$\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
Associative	$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$	$(\mathrm{A}+\mathrm{B})+\mathrm{C}=\mathrm{A}+(\mathrm{B}+\mathrm{C})$
Distributive	$\mathrm{A}(\mathrm{B}+\mathrm{C})=(\mathrm{AB})+(\mathrm{AC})$	$\mathrm{A}+(\mathrm{BC})=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\mathrm{C})$
Identity	$\mathrm{A} 1=\mathrm{A}$	$\mathrm{A}+0=\mathrm{A}$
Complement	$\mathrm{A}\left(\mathrm{A}^{\prime}\right)=0$	$\mathrm{~A}+\left(\mathrm{A}^{\prime}\right)=1$
DeMorgan's law	$(\mathrm{AB})^{\prime}=\mathrm{A}^{\prime} \mathrm{OR} \mathrm{B}^{\prime}$	$(\mathrm{A}+\mathrm{B})^{\prime}=\mathrm{A}^{\prime} \mathrm{B}^{\prime}$

[^0]
Adders

- At the digital logic level, addition is performed in binary
- Addition operations are carried out by special circuits called, appropriately, adders

Adders

- The result of adding two binary digits could produce a carry value
- Recall that $1+1=10$ in base two
- A circuit that computes the sum of two bits and produces the correct carry bit is

A	B	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Adders

Page 103

- Circuit diagram representing a half adder
- Two Boolean expressions:

$$
\begin{aligned}
& \text { sum }=A \oplus B \\
& \text { carry }=A B
\end{aligned}
$$

Adders

- A circuit called a full adder takes the carry-in value into account

A	B	Carry- in	Sum	Carry- out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Multiplexers

- Multiplexer is a general circuit that produces a single output signal
- The output is equal to one of several input signals to the circuit
- The multiplexer selects which input signal is used as an output signal based on the value represented by a few more input signals, called select signals or select control lines

Multiplexers

Figure 4.11 A block diagram of a multiplexer with three select control lines

S0	S1	S2	F
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

- The control lines S0, S1, and S2 determine which of eight other input lines (D0 through D7) are routed to the output (F)

Circuits as Memory

- Digital circuits can be used to store information
- These circuits form a sequential circuit, because the output of the circuit is also used as input to the circuit

Circuits as Memory

- An S-R latch stores a single binary digit (1 or 0)
- There are several ways an S-R latch circuit could be designed using various kinds of gates

[^1]
Circuits as Memory

- The design of this circuit guarantees that the two outputs X and Y are always complements of each other
- The value of X at any point in time is considered to be the current state of the circuit
- Therefore, if X is 1 , the circuit is storing a 1 ; if X is 0 , the circuit is storing a 0

Figure 4.12 An S-R latch

Integrated Circuits

- An integrated circuit (also called a chip) is a piece of silicon on which multiple gates have been embedded
- These silicon pieces are mounted on a plastic or ceramic package with pins along the edges that can be soldered onto circuit boards or inserted into appropriate sockets
jasonm:
Redo table (p107)

Integrated Circuits

- Integrated circuits (IC) are classified by the number of gates contained in them

Abbreviation	Name	Number of Gates
SSI	Small-Scale Integration	1 to 10
MSI	Medium-Scale Integration	10 to 100
LSI	Large-Scale Integration	100 to 100,000
VLSI	Very-Large-Scale Integration	more than 100,000

Page 107

Integrated Circuits

CPU Chips

- The most important integrated circuit in any computer is the Central Processing Unit, or CPU
- Each CPU chip has a large number of pins through which essentially all communication in a computer system occurs
Q

[^0]: Page 101

[^1]: Figure 4.12 An S-R latch

