
1

+

William Stallings
Computer Organization
and Architecture
9th Edition

Lecture slides prepared for “Computer
Organization and Architecture”, 9/e, by William Stallings, Chapter 4

“Cache Memory”.

+ Chapter 4

Cache Memory

Although seemingly simple in concept, computer memory exhibits
perhaps the widest

range of type, technology, organization, performance, and cost of any
feature

of a computer system. No single technology is optimal in satisfying the
memory

requirements for a computer system. As a consequence, the typical
computer

system is equipped with a hierarchy of memory subsystems, some
internal to the

system (directly accessible by the processor) and some external
(accessible by the

processor via an I/O module).

This chapter and the next focus on internal memory elements, while
Chapter 6

is devoted to external memory. To begin, the first section examines key
characteristics

of computer memories. The remainder of the chapter examines an
essential element

of all modern computer systems: cache memory.

2

3

Key Characteristics of Computer
Memory Systems

Table 4.1 Key Characteristics of Computer Memory Systems

The complex subject of computer memory is made more manageable
if we classify

memory systems according to their key characteristics. The most
important of these

are listed in Table 4.1.

4

+
Characteristics of Memory Systems

 Location
 Refers to whether memory is internal and external to the computer
 Internal memory is often equated with main memory
 Processor requires its own local memory, in the form of registers
 Cache is another form of internal memory
 External memory consists of peripheral storage devices that are accessible

to the processor via I/O controllers

 Capacity
 Memory is typically expressed in terms of bytes

 Unit of transfer
 For internal memory the unit of transfer is equal to the number of electrical

lines into and out of the memory module

The term location in Table 4.1 refers to whether memory is internal
and external

to the computer. Internal memory is often equated with main memory.
But there

are other forms of internal memory. The processor requires its own
local memory, in

the form of registers (e.g., see Figure 2.3). Further, as we shall see,
the control unit

portion of the processor may also require its own internal memory. We
will defer

discussion of these latter two types of internal memory to later
chapters. Cache is

another form of internal memory. External memory consists of
peripheral storage

devices, such as disk and tape, that are accessible to the processor
via I/O controllers.

An obvious characteristic of memory is its capacity. For internal
memory, this is

typically expressed in terms of bytes (1 byte = 8 bits) or words.
Common word lengths

are 8, 16, and 32 bits. External memory capacity is typically expressed
in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit
of transfer is equal to the number of electrical lines into and out of the

memory
module. This may be equal to the word length, but is often larger, such

as 64, 128, or
256 bits. To clarify this point, consider three related concepts for

internal memory:

• Word: The “natural” unit of organization of memory. The size of a
word is typically

equal to the number of bits used to represent an integer and to the
instruction

length. Unfortunately, there are many exceptions. For example, the
CRAY

C90 (an older model CRAY supercomputer) has a 64-bit word length
but uses

a 46-bit integer representation. The Intel x86 architecture has a wide
variety of

instruction lengths, expressed as multiples of bytes, and a word size of
32 bits.

• Addressable units: In some systems, the addressable unit is the
word. However,

many systems allow addressing at the byte level. In any case, the
relationship

between the length in bits A of an address and the number N of
addressable

units is 2A = N.

• Unit of transfer: For main memory, this is the number of bits read
out of or

written into memory at a time. The unit of transfer need not equal a
word or

an addressable unit. For external memory, data are often transferred in
much

larger units than a word, and these are referred to as blocks

5

Sequential
access

Sequential
access

Memory is organized into
units of data called

records

Access must be made in
a specific linear

sequence

Access time is variable

Direct
access
Direct
access

Involves a shared read-
write mechanism

Individual blocks or
records have a unique

address based on
physical location

Access time is variable

Random
access

Random
access

Each addressable
location in memory has a
unique, physically wired-
in addressing mechanism

The time to access a
given location is

independent of the
sequence of prior

accesses and is constant

Any location can be
selected at random and
directly addressed and

accessed

Main memory and some
cache systems are

random access

AssociativeAssociative

A word is retrieved based
on a portion of its

contents rather than its
address

Each location has its own
addressing mechanism

and retrieval time is
constant independent of
location or prior access

patterns

Cache memories may
employ associative

access

Method of Accessing Units of Data

Another distinction among memory types is the method of accessing
units of

data. These include the following:

• Sequential access: Memory is organized into units of data, called
records.

Access must be made in a specific linear sequence. Stored addressing
information

is used to separate records and assist in the retrieval process. A
shared

read–write mechanism is used, and this must be moved from its
current location

to the desired location, passing and rejecting each intermediate record.
Thus, the time to access an arbitrary record is highly variable. Tape

units, discussed
in Chapter 6, are sequential access.

Direct access: As with sequential access, direct access involves a
shared

read–write mechanism. However, individual blocks or records have a
unique

address based on physical location. Access is accomplished by direct
access

to reach a general vicinity plus sequential searching, counting, or
waiting to

reach the final location. Again, access time is variable. Disk units,
discussed in

Chapter 6, are direct access.

• Random access: Each addressable location in memory has a
unique, physically

wired-in addressing mechanism. The time to access a given location is
independent

of the sequence of prior accesses and is constant. Thus, any location
can be selected at random and directly addressed and accessed. Main

memory
and some cache systems are random access.

• Associative: This is a random access type of memory that enables
one to make

a comparison of desired bit locations within a word for a specified
match, and

to do this for all words simultaneously. Thus, a word is retrieved based
on a

portion of its contents rather than its address. As with ordinary random-
access

memory, each location has its own addressing mechanism, and
retrieval time

is constant independent of location or prior access patterns. Cache
memories

may employ associative access.

6

The two most important characteristics of
memory
The two most important characteristics of
memory

Three performance parameters are used:Three performance parameters are used:

Access time (latency)
•For random-access memory it is the
time it takes to perform a read or
write operation

•For non-random-access memory it
is the time it takes to position the
read-write mechanism at the
desired location

Memory cycle time
•Access time plus any additional
time required before second access
can commence

•Additional time may be required for
transients to die out on signal lines
or to regenerate data if they are
read destructively

•Concerned with the system bus, not
the processor

Transfer rate
•The rate at which data can be
transferred into or out of a memory
unit

•For random-access memory it is
equal to 1/(cycle time)

Capacity and Performance:

From a user’s point of view, the two most important characteristics of
memory

are capacity and performance. Three performance parameters are
used:

• Access time (latency): For random-access memory, this is the time
it takes to

perform a read or write operation, that is, the time from the instant that
an

address is presented to the memory to the instant that data have been
stored

or made available for use. For non-random-access memory, access
time is the

time it takes to position the read–write mechanism at the desired
location.

• Memory cycle time: This concept is primarily applied to random-
access memory

and consists of the access time plus any additional time required
before a second

access can commence. This additional time may be required for
transients to die

out on signal lines or to regenerate data if they are read destructively.
Note that

memory cycle time is concerned with the system bus, not the
processor.

• Transfer rate: This is the rate at which data can be transferred into
or out of a

memory unit. For random-access memory, it is equal to 1/(cycle time).

+ Memory
 The most common forms are:

 Semiconductor memory
 Magnetic surface memory
 Optical
 Magneto-optical

 Several physical characteristics of data storage are important:
 Volatile memory

 Information decays naturally or is lost when electrical power is switched off
 Nonvolatile memory

 Once recorded, information remains without deterioration until deliberately changed
 No electrical power is needed to retain information

 Magnetic-surface memories
 Are nonvolatile

 Semiconductor memory
 May be either volatile or nonvolatile

 Nonerasable memory
 Cannot be altered, except by destroying the storage unit
 Semiconductor memory of this type is known as read-only memory (ROM)

 For random-access memory the organization is a key design issue
 Organization refers to the physical arrangement of bits to form words

A variety of physical types of memory have been employed. The most
common

today are semiconductor memory, magnetic surface memory, used for disk and
tape, and optical and magneto-optical.

Several physical characteristics of data storage are important. In a volatile
memory, information decays naturally or is lost when electrical power is switched
off. In a nonvolatile memory, information once recorded remains without

deterioration
until deliberately changed; no electrical power is needed to retain information.
Magnetic-surface memories are nonvolatile. Semiconductor memory (memory
on integrated circuits) may be either volatile or nonvolatile. Nonerasable memory
cannot be altered, except by destroying the storage unit. Semiconductor memory of
this type is known as read-only memory (ROM). Of necessity, a practical

nonerasable
memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. In this
context,

organization refers to the physical arrangement of bits to form words. The
obvious arrangement is not always used, as is explained in Chapter 5.

7

+
Memory Hierarchy

 Design constraints on a computer’s memory can be summed
up by three questions:
 How much, how fast, how expensive

 There is a trade-off among capacity, access time, and cost
 Faster access time, greater cost per bit
 Greater capacity, smaller cost per bit
 Greater capacity, slower access time

 The way out of the memory dilemma is not to rely on a single
memory component or technology, but to employ a memory
hierarchy

The design constraints on a computer’s memory can be summed up by three questions:
How much? How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there,
applications will likely be developed to use it. The question of how fast is, in a sense,
easier to answer. To achieve greatest performance, the memory must be able to
keep up with the processor. That is, as the processor is executing instructions, we
would not want it to have to pause waiting for instructions or operands. The final
question must also be considered. For a practical system, the cost of memory must
be reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics
of memory: capacity, access time, and cost. A variety of technologies are used to
implement memory systems, and across this spectrum of technologies, the following
relationships hold:

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like to use memory
technologies that provide for large-capacity memory, both because the capacity
is needed and because the cost per bit is low. However, to meet performance
requirements, the designer needs to use expensive, relatively lower-capacity memories
with short access times.

The way out of this dilemma is not to rely on a single memory component or
technology, but to employ a memory hierarchy.

8

+ Memory Hierarchy - Diagram

A typical hierarchy is illustrated in
Figure 4.1. As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access of the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger,
cheaper, slower memories. The key to the success of this organization is item (d)
:decreasing frequency of access. We examine this concept in greater detail when we
discuss the cache, later in this chapter, and virtual memory in Chapter 8. A brief
explanation is provided at this point.

The use of two levels of memory to reduce average access time works in principle,
but only if conditions (a) through (d) apply. By employing a variety of technologies,
a spectrum of memory systems exists that satisfies conditions (a) through
(c). Fortunately, condition (d) is also generally valid.

The basis for the validity of condition (d) is a principle known as locality of
reference [DENN68]. During the course of execution of a program, memory references
by the processor, for both instructions and data, tend to cluster. Programs
typically contain a number of iterative loops and subroutines. Once a loop or subroutine
is entered, there are repeated references to a small set of instructions.
Similarly, operations on tables and arrays involve access to a clustered set of data
words. Over a long period of time, the clusters in use change, but over a short period
of time, the processor is primarily working with fixed clusters of memory references.

Accordingly, it is possible to organize data across the hierarchy such that the
percentage of accesses to each successively lower level is substantially less than that
of the level above. Consider the two-level example already presented. Let level 2
memory contains all program instructions and data. The current clusters can be
temporarily placed in level 1. From time to time, one of the clusters in level 1 will
have to be swapped back to level 2 to make room for a new cluster coming in to
level 1. On average, however, most references will be to instructions and data contained
in level 1.

This principle can be applied across more than two levels of memory, as suggested
by the hierarchy shown in Figure 4.1. The fastest, smallest, and most expensive
type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain
hundreds of registers. Main memory is the principal internal memory system of
the computer. Each location in main memory has a unique address. Main memory
is usually extended with a higher-speed, smaller cache. The cache is not usually
visible to the programmer or, indeed, to the processor. It is a device for staging
the movement of data between main memory and processor registers to improve
performance.

9

Cache and Main Memory

Cache memory is designed to combine the memory access time of expensive, high-
speed

memory combined with the large memory size of less expensive, lower-speed
memory.

The concept is illustrated in Figure 4.3a. There is a relatively large and slow
main memory together with a smaller, faster cache memory. The cache contains a
copy of portions of main memory. When the processor attempts to read a word of
memory, a check is made to determine if the word is in the cache. If so, the word is
delivered to the processor. If not, a block of main memory, consisting of some fixed
number of words, is read into the cache and then the word is delivered to the

processor.
Because of the phenomenon of locality of reference, when a block of data is
fetched into the cache to satisfy a single memory reference, it is likely that there will
be future references to that same memory location or to other words in the block.

Figure 4.3b depicts the use of multiple levels of cache. The L2 cache is slower
and typically larger than the L1 cache, and the L3 cache is slower and typically
larger than the L2 cache.

10

Cache/Main Memory Structure

Figure 4.4 depicts the structure of a cache/main-memory system.

11

Cache Read
Operation

Figure 4.5 illustrates the read operation. The processor generates the
read

address (RA) of a word to be read. If the word is contained in the
cache, it is delivered

to the processor. Otherwise, the block containing that word is loaded
into the

cache, and the word is delivered to the processor.

12

13

+
Typical Cache Organization

Figure 4.5 shows these last two
operations occurring in parallel and reflects the organization shown in

Figure 4.6,
which is typical of contemporary cache organizations. In this

organization, the cache
connects to the processor via data, control, and address lines. The

data and address
lines also attach to data and address buffers, which attach to a system

bus from
which main memory is reached. When a cache hit occurs, the data and

address buffers
are disabled and communication is only between processor and cache,

with no
system bus traffic. When a cache miss occurs, the desired address is

loaded onto the
system bus and the data are returned through the data buffer to both

the cache and
the processor. In other organizations, the cache is physically

interposed between
the processor and the main memory for all data, address, and control

lines. In this
latter case, for a cache miss, the desired word is first read into the

cache and then
transferred from cache to processor.

Elements of Cache Design

Table 4.2 Elements of Cache Design

This section provides an overview of cache design parameters and reports
some

typical results. We occasionally refer to the use of caches in high-
performance computing

(HPC). HPC deals with supercomputers and their software, especially for
scientific applications that involve large amounts of data, vector and matrix

computation,
and the use of parallel algorithms. Cache design for HPC is quite different
than for other hardware platforms and applications. Indeed, many

researchers
have found that HPC applications perform poorly on computer architectures

that
employ caches [BAIL93]. Other researchers have since shown that a cache

hierarchy
can be useful in improving performance if the application software is tuned

to
exploit the cache [WANG99, PRES01].

Although there are a large number of cache implementations, there are a
few

basic design elements that serve to classify and differentiate cache
architectures.

Table 4.2 lists key elements.

14

+
Cache Addresses

 Virtual memory
 Facility that allows programs to address memory from a logical point

of view, without regard to the amount of main memory physically
available

 When used, the address fields of machine instructions contain
virtual addresses

 For reads to and writes from main memory, a hardware memory
management unit (MMU) translates each virtual address into a
physical address in main memory

Virtual Memory

Almost all non-embedded processors, and many embedded
processors, support virtual

memory, a concept discussed in Chapter 8. In essence, virtual memory
is a facility

that allows programs to address memory from a logical point of view,
without

regard to the amount of main memory physically available. When
virtual memory is

used, the address fields of machine instructions contain virtual
addresses. For reads

to and writes from main memory, a hardware memory management
unit (MMU)

translates each virtual address into a physical address in main
memory.

15

+

Logical
and

Physical
Caches

When virtual addresses are used, the system designer may choose to place the
cache between the processor and the MMU or between the MMU and main

memory
(Figure 4.7). A logical cache, also known as a virtual cache, stores data using
virtual addresses. The processor accesses the cache directly, without going

through
the MMU. A physical cache stores data using main memory physical

addresses.

One obvious advantage of the logical cache is that cache access speed is faster
than for a physical cache, because the cache can respond before the MMU

performs
an address translation. The disadvantage has to do with the fact that most virtual
memory systems supply each application with the same virtual memory address
space. That is, each application sees a virtual memory that starts at address 0.

Thus,
the same virtual address in two different applications refers to two different

physical
addresses. The cache memory must therefore be completely flushed with each
application context switch, or extra bits must be added to each line of the cache

to
identify which virtual address space this address refers to.

16

Table 4.3

Cache
Sizes of
Some

Processors

a Two values separated by a slash

refer to instruction and data

caches.

b Both caches are instruction only;

no data caches.

The first item in Table 4.2, cache size, has already been discussed.
We would like the

size of the cache to be small enough so that the overall average cost
per bit is close

to that of main memory alone and large enough so that the overall
average access

time is close to that of the cache alone. There are several other
motivations for

minimizing cache size. The larger the cache, the larger the number of
gates involved

in addressing the cache. The result is that large caches tend to be
slightly slower

than small ones—even when built with the same integrated circuit
technology and

put in the same place on chip and circuit board. The available chip and
board area

also limits cache size. Because the performance of the cache is very
sensitive to the

nature of the workload, it is impossible to arrive at a single “optimum”
cache size.

Table 4.3 lists the cache sizes of some current and past processors.

17

18

DirectDirect

• The simplest technique

• Maps each block of main
memory into only one
possible cache line

AssociativeAssociative
• Permits each main

memory block to be
loaded into any line of the
cache

• The cache control logic
interprets a memory
address simply as a Tag
and a Word field

• To determine whether a
block is in the cache, the
cache control logic must
simultaneously examine
every line’s Tag for a
match

Set AssociativeSet Associative

• A compromise that
exhibits the strengths of
both the direct and
associative approaches
while reducing their
disadvantages

Mapping Function

 Because there are fewer cache lines than main memory
blocks, an algorithm is needed for mapping main memory
blocks into cache lines

 Three techniques can be used:

Because there are fewer cache lines than main memory blocks, an
algorithm is

needed for mapping main memory blocks into cache lines. Further, a
means is

needed for determining which main memory block currently occupies a
cache line.

The choice of the mapping function dictates how the cache is
organized. Three

techniques can be used: direct, associative, and set associative.

Direct mapping: The simplest technique, known as direct mapping,
maps each

block of main memory into only one possible cache line.

Associative mapping: Associative mapping overcomes the
disadvantage of direct

mapping by permitting each main memory block to be loaded into any
line of the

cache.

Set-associative mapping: Set-associative mapping is a compromise
that

exhibits the strengths of both the direct and associative approaches
while reducing

their disadvantages.

19

+

Direct

Mapping

The mapping is expressed as
i = j modulo m
where
i = cache line number
j = main memory block number
m = number of lines in the cache

Figure 4.8a shows the mapping for the first m blocks of main memory.
Each

block of main memory maps into one unique line of the cache. The
next m blocks

of main memory map into the cache in the same fashion; that is, block
Bm of main

memory maps into line L0 of cache, block Bm+1 maps into line L1, and so on.

20

Direct Mapping Cache Organization

The mapping function is easily implemented using the main memory
address.

Figure 4.9 illustrates the general mechanism.

+

Direct

Mapping

Example

Figure 4.10 Direct Mapping Example.

21

+
Direct Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2s+ w/2w = 2s

 Number of lines in cache = m = 2r

 Size of tag = (s – r) bits

The direct mapping technique is simple and inexpensive to implement.
Its

main disadvantage is that there is a fixed cache location for any given
block. Thus,

if a program happens to reference words repeatedly from two different
blocks that

map into the same line, then the blocks will be continually swapped in
the cache,

and the hit ratio will be low (a phenomenon known as thrashing).

22

+
Victim Cache

 Originally proposed as an approach to reduce the conflict
misses of direct mapped caches without affecting its fast
access time

 Fully associative cache

 Typical size is 4 to 16 cache lines

 Residing between direct mapped L1 cache and the next level
of memory

One approach to lower the miss penalty is to remember what was
discarded

in case it is needed again. Since the discarded data has already been
fetched, it can

be used again at a small cost. Such recycling is possible using a victim
cache. Victim

cache was originally proposed as an approach to reduce the conflict
misses of direct

mapped caches without affecting its fast access time. Victim cache is a
fully associative

cache, whose size is typically 4 to 16 cache lines, residing between a
direct mapped L1

cache and the next level of memory. This concept is explored in
Appendix D.

23

24

Fully Associative Cache Organization

Associative mapping overcomes the disadvantage of direct
mapping by permitting each main memory block to be loaded into any

line of the
cache (Figure 4.8b). In this case, the cache control logic interprets a

memory address
simply as a Tag and a Word field. The Tag field uniquely identifies a

block of main
memory. To determine whether a block is in the cache, the cache

control logic must
simultaneously examine every line’s tag for a match. Figure 4.11

illustrates the logic.

25

+

Associative

Mapping

Example

Figure 4.12 Associative Mapping Example.

+
Associative Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2s+ w/2w = 2s

 Number of lines in cache = undetermined

 Size of tag = s bits

With associative mapping, there is flexibility as to which block to
replace when

a new block is read into the cache. Replacement algorithms, discussed
later in this

section, are designed to maximize the hit ratio. The principal
disadvantage of associative

mapping is the complex circuitry required to examine the tags of all
cache

lines in parallel.

26

27

+
Set Associative Mapping

 Compromise that exhibits the strengths of both the direct and
associative approaches while reducing their disadvantages

 Cache consists of a number of sets

 Each set contains a number of lines

 A given block maps to any line in a given set

 e.g. 2 lines per set
 2 way associative mapping
 A given block can be in one of 2 lines in only one set

Set-associative mapping is a compromise that
exhibits the strengths of both the direct and associative approaches

while reducing
their disadvantages.

In this case, the cache consists of a number sets, each of which
consists of a

number of lines. The relationships are
m = v* k
i = j modulo v
where
i = cache set number
j = main memory block number
m = number of lines in the cache
v = number of sets
k = number of lines in each set

This is referred to as k-way set-associative mapping.

+

Mapping From Main
Memory
to Cache:

k-Way
 Set Associative

Figure 4.13a illustrates
this mapping for the first v blocks of main memory. As with associative

mapping,
each word maps into multiple cache lines. For set-associative

mapping, each word
maps into all the cache lines in a specific set, so that main memory

block B0 maps

into set 0, and so on. Thus, the set-associative cache can be physically implemented

as n associative caches. It is also possible to implement the set-associative cache as

k direct mapping caches, as shown in Figure 4.13b. Each direct-mapped cache is

referred to as a way, consisting of v lines. The first v lines of main memory are direct

mapped into the v lines of each way; the next group of v lines of main memory are

similarly mapped, and so on. The direct-mapped implementation is typically used

for small degrees of associativity (small values of k) while the associative-mapped

implementation is typically used for higher degrees of associativity [JACO08].

28

29

k-Way
Set

Associative
Cache

Organization

For set-associative mapping, the cache control logic interprets a
memory

address as three fields: Tag, Set, and Word. The d set bits specify one
of v = 2d sets.

The s bits of the Tag and Set fields specify one of the 2s blocks of main memory.

Figure 4.14 illustrates the cache control logic. With fully associative mapping, the

tag in a memory address is quite large and must be compared to the tag of every line

in the cache. With k-way set-associative mapping, the tag in a memory address is

much smaller and is only compared to the k tags within a single set.

+
Set Associative Mapping Summary

 Address length = (s + w) bits

 Number of addressable units = 2s+w words or bytes

 Block size = line size = 2w words or bytes

 Number of blocks in main memory = 2s+w/2w=2s

 Number of lines in set = k

 Number of sets = v = 2d

 Number of lines in cache = m=kv = k * 2d

 Size of cache = k * 2d+w words or bytes

 Size of tag = (s – d) bits

Set Associative Mapping Summary.

30

31

Figure 4.15 shows an example using set-associative mapping with two
lines in each set, referred to as two-way set-associative.

+
Varying Associativity Over Cache Size

Figure 4.16 shows the results of one simulation study of set-associative cache
performance as a function of cache size [GENU04]. The difference in

performance
between direct and two-way set associative is significant up to at least a cache

size of
64 kB. Note also that the difference between two-way and four-way at 4 kB is

much
less than the difference in going from for 4 kB to 8 kB in cache size. The

complexity
of the cache increases in proportion to the associativity, and in this case would

not
be justifiable against increasing cache size to 8 or even 16 Kbytes. A final point

to
note is that beyond about 32 kB, increase in cache size brings no significant

increase
in performance.

The results of Figure 4.16 are based on simulating the execution of a GCC
compiler. Different applications may yield different results. For example,

[CANT01]
reports on the results for cache performance using many of the CPU2000 SPEC
benchmarks. The results of [CANT01] in comparing hit ratio to cache size follow
the same pattern as Figure 4.16, but the specific values are somewhat different.

32

33

+
Replacement Algorithms

 Once the cache has been filled, when a new block is brought
into the cache, one of the existing blocks must be replaced

 For direct mapping there is only one possible line for any
particular block and no choice is possible

 For the associative and set-associative techniques a
replacement algorithm is needed

 To achieve high speed, an algorithm must be implemented in
hardware

Once the cache has been filled, when a new block is brought into the
cache, one

of the existing blocks must be replaced. For direct mapping, there is
only one possible

line for any particular block, and no choice is possible. For the
associative

and set-associative techniques, a replacement algorithm is needed. To
achieve high

speed, such an algorithm must be implemented in hardware.

34

+
The four most common replacement
algorithms are:

 Least recently used (LRU)
 Most effective
 Replace that block in the set that has been in the cache longest with no

reference to it
 Because of its simplicity of implementation, LRU is the most popular

replacement algorithm

 First-in-first-out (FIFO)
 Replace that block in the set that has been in the cache longest
 Easily implemented as a round-robin or circular buffer technique

 Least frequently used (LFU)
 Replace that block in the set that has experienced the fewest references
 Could be implemented by associating a counter with each line

A number of algorithms
have been tried. We mention four of the most common. Probably the

most
effective is least recently used (LRU): Replace that block in the set that

has been in
the cache longest with no reference to it. For two-way set associative,

this is easily
implemented. Each line includes a USE bit. When a line is referenced,

its USE bit
is set to 1 and the USE bit of the other line in that set is set to 0. When

a block is to
be read into the set, the line whose USE bit is 0 is used. Because we

are assuming
that more recently used memory locations are more likely to be

referenced, LRU
should give the best hit ratio. LRU is also relatively easy to implement

for a fully
associative cache. The cache mechanism maintains a separate list of

indexes to all
the lines in the cache. When a line is referenced, it moves to the front

of the list.
For replacement, the line at the back of the list is used. Because of its

simplicity of
implementation, LRU is the most popular replacement algorithm.

Another possibility is first-in-first-out (FIFO): Replace that block in the
set

that has been in the cache longest. FIFO is easily implemented as a
round-robin

or circular buffer technique. Still another possibility is least frequently
used (LFU):

Replace that block in the set that has experienced the fewest
references. LFU could

be implemented by associating a counter with each line. A technique
not based on

usage (i.e., not LRU, LFU, FIFO, or some variant) is to pick a line at
random from

among the candidate lines. Simulation studies have shown that
random replacement

provides only slightly inferior performance to an algorithm based on
usage [SMIT82].

35

When a block that is resident in
the cache is to be replaced there

are two cases to consider:

When a block that is resident in
the cache is to be replaced there

are two cases to consider:

If the old block in the cache has not been
altered then it may be overwritten with a
new block without first writing out the old

block

If at least one write operation has been
performed on a word in that line of the

cache then main memory must be updated
by writing the line of cache out to the block

of memory before bringing in the new
block

There are two problems to
contend with:

There are two problems to
contend with:

More than one device may have access to
main memory

A more complex problem occurs when
multiple processors are attached to the

same bus and each processor has its own
local cache - if a word is altered in one
cache it could conceivably invalidate a

word in other caches

Write Policy

When a block that is resident in the cache is to be replaced, there are
two cases to

consider. If the old block in the cache has not been altered, then it may
be overwritten

with a new block without first writing out the old block. If at least one
write

operation has been performed on a word in that line of the cache, then
main memory

must be updated by writing the line of cache out to the block of
memory before

bringing in the new block. A variety of write policies, with performance
and economic

trade-offs, is possible. There are two problems to contend with. First,
more

than one device may have access to main memory. For example, an
I/O module

may be able to read-write directly to memory. If a word has been
altered only in the

cache, then the corresponding memory word is invalid. Further, if the
I/O device

has altered main memory, then the cache word is invalid. A more
complex problem

occurs when multiple processors are attached to the same bus and
each processor

has its own local cache. Then, if a word is altered in one cache, it could
conceivably

invalidate a word in other caches.

36

+
Write Through

and Write Back

 Write through
 Simplest technique
 All write operations are made to main memory as well as to the cache
 The main disadvantage of this technique is that it generates substantial

memory traffic and may create a bottleneck

 Write back
 Minimizes memory writes
 Updates are made only in the cache
 Portions of main memory are invalid and hence accesses by I/O modules

can be allowed only through the cache
 This makes for complex circuitry and a potential bottleneck

The simplest technique is called write through. Using this technique,
all write

operations are made to main memory as well as to the cache, ensuring
that main

memory is always valid. Any other processor–cache module can
monitor traffic to

main memory to maintain consistency within its own cache. The main
disadvantage

of this technique is that it generates substantial memory traffic and
may create a bottleneck.

An alternative technique, known as write back, minimizes memory
writes.

With write back, updates are made only in the cache. When an update
occurs, a

dirty bit, or use bit, associated with the line is set. Then, when a block
is replaced, it

is written back to main memory if and only if the dirty bit is set. The
problem with

write back is that portions of main memory are invalid, and hence
accesses by I/O

modules can be allowed only through the cache. This makes for
complex circuitry

and a potential bottleneck. Experience has shown that the percentage
of memory

references that are writes is on the order of 15% [SMIT82]. However,
for HPC

applications, this number may approach 33% (vector-vector
multiplication) and can

go as high as 50% (matrix transposition).

In a bus organization in which more than one device (typically a
processor)

has a cache and main memory is shared, a new problem is introduced.
If data in one

cache are altered, this invalidates not only the corresponding word in
main memory,

but also that same word in other caches (if any other cache happens to
have that

same word). Even if a write-through policy is used, the other caches
may contain

invalid data. A system that prevents this problem is said to maintain
cache coherency.

Possible approaches to cache coherency include the following:

• Bus watching with write through: Each cache controller monitors
the address

lines to detect write operations to memory by other bus masters. If
another

master writes to a location in shared memory that also resides in the
cache

memory, the cache controller invalidates that cache entry. This strategy
depends

on the use of a write-through policy by all cache controllers.

• Hardware transparency: Additional hardware is used to ensure that
all updates

to main memory via cache are reflected in all caches. Thus, if one
processor

modifies a word in its cache, this update is written to main memory. In
addition,

any matching words in other caches are similarly updated.

• Non-cacheable memory: Only a portion of main memory is shared
by more

than one processor, and this is designated as non-cacheable. In such
a system,

all accesses to shared memory are cache misses, because the shared
memory

is never copied into the cache. The non-cacheable memory can be
identified

using chip-select logic or high-address bits.

Line Size

Another design element is the line size. When a block of data is retrieved and
placed

in the cache, not only the desired word but also some number of adjacent words
are

retrieved. As the block size increases from very small to larger sizes, the hit ratio
will at first increase because of the principle of locality, which states that data in the
vicinity of a referenced word are likely to be referenced in the near future. As the
block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability
of using the newly fetched information becomes less than the probability of reusing
the information that has to be replaced. Two specific effects come into play:

• Larger blocks reduce the number of blocks that fit into a cache. Because each
block fetch overwrites older cache contents, a small number of blocks results
in data being overwritten shortly after they are fetched.

• As a block becomes larger, each additional word is farther from the requested
word and therefore less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on
the locality characteristics of a particular program, and no definitive optimum value
has been found. A size of from 8 to 64 bytes seems reasonably close to optimum
[SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64- and 128-byte cache
line sizes are most frequently used.

37

+
Multilevel Caches
 As logic density has increased it has become possible to have a cache on

the same chip as the processor

 The on-chip cache reduces the processor’s external bus activity and
speeds up execution time and increases overall system performance
 When the requested instruction or data is found in the on-chip cache, the bus

access is eliminated
 On-chip cache accesses will complete appreciably faster than would even zero-

wait state bus cycles
 During this period the bus is free to support other transfers

 Two-level cache:
 Internal cache designated as level 1 (L1)
 External cache designated as level 2 (L2)

 Potential savings due to the use of an L2 cache depends on the hit rates in
both the L1 and L2 caches

 The use of multilevel caches complicates all of the design issues related to
caches, including size, replacement algorithm, and write policy

As logic density has increased, it has become possible to
have a cache on the same chip as the processor: the on-chip cache. Compared with
a cache reachable via an external bus, the on-chip cache reduces the processor’s
external bus activity and therefore speeds up execution times and increases overall
system performance. When the requested instruction or data is found in the on-chip
cache, the bus access is eliminated. Because of the short data paths internal to
the processor, compared with bus lengths, on-chip cache accesses will complete
appreciably faster than would even zero-wait state bus cycles. Furthermore, during
this period the bus is free to support other transfers.
The inclusion of an on-chip cache leaves open the question of whether an
off-chip, or external, cache is still desirable. Typically, the answer is yes, and most contemporary
designs include both on-chip and external caches. The simplest such organization
is known as a two-level cache, with the internal cache designated as level 1 (L1)
and the external cache designated as level 2 (L2). The reason for including an L2 cache
is the following: If there is no L2 cache and the processor makes an access request
for a memory location not in the L1 cache, then the processor must access DRAM or
ROM memory across the bus. Due to the typically slow bus speed and slow memory
access time, this results in poor performance. On the other hand, if an L2 SRAM (static
RAM) cache is used, then frequently the missing information can be quickly retrieved.
If the SRAM is fast enough to match the bus speed, then the data can be accessed
using a zero-wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are noteworthy.
First, for an off-chip L2 cache, many designs do not use the system bus as
the path for transfer between the L2 cache and the processor, but use a separate
data path, so as to reduce the burden on the system bus. Second, with the continued
shrinkage of processor components, a number of processors now incorporate the L2
cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates
in both the L1 and L2 caches. Several studies have shown that, in general, the use
of a second-level cache does improve performance (e.g., see [AZIM92], [NOVI93],
[HAND98]). However, the use of multilevel caches does complicate all of the design
issues related to caches, including size, replacement algorithm, and write policy; see
[HAND98] and [PEIR99] for discussions.

38

Hit Ratio (L1 & L2)
For 8 Kbyte and 16 Kbyte L1

Figure 4.17 shows the results of one simulation study of two-level cache performance
as a function of cache size [GENU04]. The figure assumes that both
caches have the same line size and shows the total hit ratio. That is, a hit is counted
if the desired data appears in either the L1 or the L2 cache. The figure shows the
impact of L2 on total hits with respect to L1 size. L2 has little effect on the total
number of cache hits until it is at least double the L1 cache size. Note that the steepest
part of the slope for an L1 cache of 8 Kbytes is for an L2 cache of 16 Kbytes.
Again for an L1 cache of 16 Kbytes, the steepest part of the curve is for an L2 cache
size of 32 Kbytes. Prior to that point, the L2 cache has little, if any, impact on total
cache performance. The need for the L2 cache to be larger than the L1 cache to
affect performance makes sense. If the L2 cache has the same line size and capacity
as the L1 cache, its contents will more or less mirror those of the L1 cache.

With the increasing availability of on-chip area available for cache, most contemporary
microprocessors have moved the L2 cache onto the processor chip and
added an L3 cache. Originally, the L3 cache was accessible over the external bus.
More recently, most microprocessors have incorporated an on-chip L3 cache. In
either case, there appears to be a performance advantage to adding the third level
(e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe zEnterprise
systems, now incorporate 3 on-chip cache levels and a fourth level of cache
shared across multiple chips [CURR11].

39

+
Unified Versus Split Caches

 Has become common to split cache:
 One dedicated to instructions
 One dedicated to data
 Both exist at the same level, typically as two L1 caches

 Advantages of unified cache:
 Higher hit rate

 Balances load of instruction and data fetches automatically
 Only one cache needs to be designed and implemented

 Trend is toward split caches at the L1 and unified caches for higher levels

 Advantages of split cache:
 Eliminates cache contention between instruction fetch/decode unit and

execution unit
 Important in pipelining

When the on-chip cache first made an appearance,
many of the designs consisted of a single cache used to store references to both data
and instructions. More recently, it has become common to split the cache into two:
one dedicated to instructions and one dedicated to data. These two caches both exist
at the same level, typically as two L1 caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction L1 cache, and when the
processor attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

• For a given cache size, a unified cache has a higher hit rate than split caches
because it balances the load between instruction and data fetches automatically.
That is, if an execution pattern involves many more instruction fetches
than data fetches, then the cache will tend to fill up with instructions, and if an
execution pattern involves relatively more data fetches, the opposite will occur.

• Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels,
particularly for superscalar machines, which emphasize parallel instruction execution
and the prefetching of predicted future instructions. The key advantage of the
split cache design is that it eliminates contention for the cache between the instruction
fetch/decode unit and the execution unit. This is important in any design that
relies on the pipelining of instructions. Typically, the processor will fetch instructions
ahead of time and fill a buffer, or pipeline, with instructions to be executed. Suppose
now that we have a unified instruction/data cache. When the execution unit performs
a memory access to load and store data, the request is submitted to the unified cache.
If, at the same time, the instruction prefetcher issues a read request to the cache for
an instruction, that request will be temporarily blocked so that the cache can service
the execution unit first, enabling it to complete the currently executing instruction.
This cache contention can degrade performance by interfering with efficient use of
the instruction pipeline. The split cache structure overcomes this difficulty.

40

41

Pentium
4

Cache

Table 4.4 Intel Cache Evolution

The evolution of cache organization is seen clearly in the evolution of
Intel microprocessors

(Table 4.4). The 80386 does not include an on-chip cache. The 80486
includes a single on-chip cache of 8 Kbytes, using a line size of 16

bytes and a
four-way set-associative organization. All of the Pentium processors

include two
on-chip L1 caches, one for data and one for instructions. For the

Pentium 4, the
L1 data cache is 16 Kbytes, using a line size of 64 bytes and a four-

way set-associative
organization. The Pentium 4 instruction cache is described

subsequently. The
Pentium II also includes an L2 cache that feeds both of the L1 caches.

The L2 cache
is eight-way set associative with a size of 512 kB and a line size of 128

bytes. An L3
cache was added for the Pentium III and became on-chip with high-

end versions of
the Pentium 4.

Pentium 4 Block Diagram

Figure 4.18 provides a simplified view of the Pentium 4 organization, highlighting
the placement of the three caches. The processor core consists of four major
components:

• Fetch/decode unit: Fetches program instructions in order from the L2 cache,
decodes these into a series of micro-operations, and stores the results in the L1
instruction cache.

• Out-of-order execution logic: Schedules execution of the micro-operations
subject to data dependencies and resource availability; thus, micro-operations
may be scheduled for execution in a different order than they were fetched
from the instruction stream. As time permits, this unit schedules speculative
execution of micro-operations that may be required in the future.

Execution units: These units executes micro-operations, fetching the required
data from the L1 data cache and temporarily storing results in registers.

• Memory subsystem: This unit includes the L2 and L3 caches and the system
bus, which is used to access main memory when the L1 and L2 caches have a
cache miss and to access the system I/O resources.

Unlike the organization used in all previous Pentium models, and in most
other processors, the Pentium 4 instruction cache sits between the instruction
decode logic and the execution core. The reasoning behind this design decision is
as follows: As discussed more fully in Chapter 16, the Pentium process decodes, or
translates, Pentium machine instructions into simple RISC-like instructions called
micro-operations. The use of simple, fixed-length micro-operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance.
However, the Pentium machine instructions are cumbersome to decode; they have a
variable number of bytes and many different options. It turns out that performance
is enhanced if this decoding is done independently of the scheduling and pipelining
logic. We return to this topic in Chapter 16.

The data cache employs a write-back policy: Data are written to main memory
only when they are removed from the cache and there has been an update. The
Pentium 4 processor can be dynamically configured to support write-through caching.

42

Pentium 4 Cache Operating Modes

Note: CD = 0; NW = 1 is an invalid combination.

Table 4.5 Pentium 4 Cache Operating Modes

The L1 data cache is controlled by two bits in one of the control
registers,

labeled the CD (cache disable) and NW (not write-through) bits (Table
4.5). There

are also two Pentium 4 instructions that can be used to control the data
cache: INVD

invalidates (flushes) the internal cache memory and signals the
external cache (if

any) to invalidate. WBINVD writes back and invalidates internal cache
and then

writes back and invalidates external cache.

Both the L2 and L3 caches are eight-way set-associative with a line
size of

128 bytes.

43

ARM Cache Features

Table 4.6 ARM Cache Features

The ARM cache organization has evolved with the overall architecture
of the ARM

family, reflecting the relentless pursuit of performance that is the
driving force for

all microprocessor designers.

Table 4.6 shows this evolution. The ARM7 models used a unified L1
cache,

while all subsequent models use a split instruction/data cache. All of
the ARM

designs use a set-associative cache, with the degree of associativity
and the line size

varying. ARM cached cores with an MMU use a logical cache for
processor families

ARM7 through ARM10, including the Intel StongARM and Intel Xscale
processors.

The ARM11 family uses a physical cache. The distinction between
logical and

physical cache is discussed earlier in this chapter (Figure 4.7).

44

ARM Cache and Write Buffer Organization

An interesting feature of the ARM architecture is the use of a small first-in-first-
out (FIFO) write buffer to enhance memory write performance. The write
buffer is interposed between the cache and main memory and consists of a set of
addresses and a set of data words. The write buffer is small compared to the cache,
and may hold up to four independent addresses. Typically, the write buffer is enabled
for all of main memory, although it may be selectively disabled at the page
level. Figure 4.19, taken from [SLOS04], shows the relationship among the write
buffer, cache, and main memory.

The write buffer operates as follows: When the processor performs a write to
a bufferable area, the data are placed in the write buffer at processor clock speed
and the processor continues execution. A write occurs when data in the cache are
written back to main memory. Thus, the data to be written are transferred from the
cache to the write buffer. The write buffer then performs the external write in parallel.
If, however, the write buffer is full (either because there are already the maximum
number of words of data in the buffer or because there is no slot for the new
address) then the processor is stalled until there is sufficient space in the buffer. As
non-write operations proceed, the write buffer continues to write to main memory
until the buffer is completely empty.

Data written to the write buffer are not available for reading back into the
cache until the data have transferred from the write buffer to main memory. This
is the principal reason that the write buffer is quite small. Even so, unless there
is a high proportion of writes in an executing program, the write buffer improves
performance.

45

46

+ Summary

 Characteristics of Memory
Systems
 Location
 Capacity
 Unit of transfer

 Memory Hierarchy
 How much?
 How fast?
 How expensive?

 Cache memory principles

 Elements of cache design
 Cache addresses
 Cache size
 Mapping function
 Replacement algorithms
 Write policy
 Line size
 Number of caches

 Pentium 4 cache organization

 ARM cache organization

Chapter 4

Cache
Memory

Chapter 4 summary.

